
Desarrollo de un API gateway personalizado y ligero en Java para la
gestión segura de acceso y enrutamiento en APIs REST

Development of a lightweight custom API gateway in Java for secure access management and
routing in REST APIs

Xavier Mauricio Rea-Peñafiel1 _, José Antonio Quiña-Mera1-2 _, Diego Javier Trejo-España1 _

1 Facultad de Ingenieŕıa en Ciencias Aplicadas, Universidad Técnica del Norte, Cdla. Universitaria El Olivo, Ibarra, Ecuador
2 Grupo de Investigación Ciencias en Red eCIER, Universidad Técnica del Norte

Enviado: 2024-11-10, Aceptado: 2025-07-28, Publicado: 2026-01-30
Autor de correspondencia:
Xavier Rea: mrea@utn.edu.ec
DOI: 10.53358/ideas.v8i1.1171

PALABRAS CLAVE RESUMEN
API-Gateway,
API-Rest,
facturación electrónica,
seguridad,
aplicaciones móviles,
ingenieŕıa de software,
sistemas de información.

Esta propuesta describe el diseño y desarrollo de un producto de software en
Java que implemente un API Gateway personalizado para gestionar la segu-
ridad y control de acceso en lugar de utilizar un sistema de tokens JWT. La
propuesta incluye la definición de requerimientos funcionales, el diseño de soft-
ware y su arquitectura, la implementación y la puesta en marcha del sistema,
con el objetivo de ofrecer una solución segura y eficiente para la comunicación
y control entre los clientes y una API REST. Se aplicó la metodoloǵıa de De-
sign Science Research, centrándose en el proceso de diseño e implementación
del producto de software en Java que permita la integración segura entre un
cliente y una API REST. La seguridad en aplicaciones web y en arquitecturas
de APIs REST es fundamental para proteger la integridad, confidencialidad y
disponibilidad de los sistemas en un entorno digital cada vez más expuesto a
amenazas. A su vez, la metodoloǵıa Scrum permite gestionar proyectos de de-
sarrollo de software de manera ágil y colaborativa, lo cual resulta ideal para
implementar soluciones de seguridad de forma iterativa y adaptativa. Luego, en
la fase de diseño y codificación del software en Java, se define que el API Gate-
way personalizado debe gestionar solicitudes entrantes y redistribuir el tráfico
a las APIs REST de manera segura. Para ello, el API Gateway personalizado
implementa caracteŕısticas como autenticación y validación de roles de usuario.
En la API REST se crean endpoints simples que permitan la comunicación flui-
da con el gateway. Esta propuesta ofrece una solución robusta para la gestión
de la seguridad y el control de acceso en aplicaciones distribuidas. Al utilizar la
API el sistema centraliza la seguridad y la autenticación de manera eficiente,
mejorando la resistencia ante fallos y manteniendo un rendimiento estable.

Innovation & Development in Engineering
and Applied Science

Journal homepage: https://revistasojs.utn.edu.ec/index.php/ideas

https://orcid.org/0000-0002-2913-6759
https://orcid.org/0000-0003-2516-9016
https://orcid.org/0000-0002-2973-4345
mailto:mrea@utn.edu.ec
https://doi.org/10.53358/ideas.v8i1.1171
https://revistasojs.utn.edu.ec/index.php/ideas

Xavier Rea et al. IDEAS, Vol. 8, Núm. 1, 2026

KEYWORDS ABSTRACT
API-Gateway,
API-Rest,
security,
mobile applications,
electronic invoicing,
software engineering,
information systems.

This proposal outlines the design and development of a Java-based software
artifact implementing a custom API Gateway to manage security and access
control, replacing the need for JWT token systems. The proposal encompas-
ses the definition of functional requirements, software design and architecture,
implementation, and system deployment, aiming to offer a secure and efficient
solution for communication and control between clients and a REST API. The
Design Science Research methodology was applied, focusing on the design and
implementation process of the software product, which enables secure integra-
tion between a client and a REST API. Security in web applications and REST
API architectures is essential to protect system integrity, confidentiality, and
availability in an increasingly threat-exposed digital environment. Additionally,
the Scrum methodology facilitates agile and collaborative project management,
ideal for iteratively and adaptively implementing security solutions. During the
design and coding phases in Java, the custom API Gateway is defined to mana-
ge incoming requests and safely route traffic to REST APIs. The custom API
Gateway incorporates features such as authentication and user role validation.
Simple endpoints are created on the REST API to ensure seamless communi-
cation with the gateway. This proposal provides a robust solution for managing
security and access control in distributed applications. By using the API Ga-
teway, the system centralizes security and authentication efficiently, enhancing
fault tolerance and maintaining stable performance.

1. Introducción

1.1. La seguridad en las aplicaciones web y sus recursos

En un entorno digital en constante evolución, la seguridad en las aplicaciones web ha cobrado una importancia cŕıtica,
especialmente debido al incremento de amenazas y vulnerabilidades que afectan tanto a usuarios como a organizaciones
[1]. Las aplicaciones modernas suelen depender de arquitecturas basadas en APIs, particularmente de APIs REST [2],
que facilitan la comunicación entre distintos servicios y dispositivos, pero también introducen nuevos vectores de
ataque que deben ser gestionados con mecanismos de seguridad avanzados [3]. En este contexto, la seguridad en las
API REST y en las aplicaciones web se convierte en un pilar fundamental para proteger la integridad de los datos y la
confidencialidad de la información durante la interacción entre el cliente y el servidor. Sin embargo, la implementación
de seguridad directamente en cada API puede ser compleja y dif́ıcil de escalar.

Una solución efectiva y ampliamente adoptada es el uso de un API Gateway, una capa intermedia que, además de
facilitar la gestión de tráfico y la autenticación centralizada, implementa poĺıticas de seguridad que limitan y controlan
el acceso a los distintos recursos ofrecidos por las APIs REST [4]. El API Gateway no solo actúa como un punto de
control para la autenticación y la autorización, sino que también permite la detección y mitigación de amenazas en
tiempo real, ofreciendo aśı una primera ĺınea de defensa robusta contra ataques como la inyección de SQL, cross-
site request forgery (CSRF), cross-site scripting (XSS), los ataques de denegación de servicio (DoS) y otros vectores
comunes en el tráfico de aplicaciones web.

Aqúı, el problema es la necesidad de controlar de manera unificada la autenticación y autorización de solicitudes en
entornos distribuidos. Un API Gateway personalizado es necesario, ya que existen limitaciones en soluciones existentes
[5] o tienen desaf́ıos espećıficos en la seguridad y control de acceso [6] que un diseño a medida podŕıa resolver [7]. La
motivación radica en mejorar la seguridad y experiencia del usuario en sistemas que usan RESTful APIs, aprovechando
la arquitectura que propone un intermediario representado por el API-Gateway.

La integración efectiva entre un API Gateway y las APIs REST subyacentes es crucial para maximizar la seguridad
y garantizar un flujo de comunicación seguro, controlado y auditado. Este art́ıculo explora los principales aspectos de
seguridad en aplicaciones web, la protección en APIs REST, las ventajas y desaf́ıos de implementar un API Gateway
[8] y las mejores prácticas [9] para lograr una integración segura y eficiente entre un API Gateway y las APIs REST,
contribuyendo aśı al desarrollo de arquitecturas de seguridad en entornos de aplicaciones web.

El objetivo principal de este trabajo y como una contribución, respecto a otros API Gateway existentes, radica
en la implementación sencilla de un API Gateway personalizado utilizando Servlets en Java, beneficiándose de va-
rias caracteŕısticas de bajo nivel como ejecución aśıncrona y en hilos separados, uso de pools de recursos y manejo

Xavier Rea et al. IDEAS, Vol. 8, Núm. 1, 2026

optimizado de memoria [10], lo cual permite mantener un control más exacto sobre la ejecución.
Adicionalmente, se contempla una forma de acceso sin depender de tokens JWT, que suele ser el mecanismo de

autenticación ampliamente adoptado para el acceso a APIs REST. Se propone un sistema que gestiona de manera
integrada la autenticación y la generación de un token de sesión validado por IP, ofreciendo una alternativa que también
es segura [11] y que pueda ser utilizada en aplicaciones web.

Además, la combinación de la metodoloǵıa Design Science Research (DSR) y Scrum asegura que el diseño y la
implementación sean iterativos, adaptativos y centrados en resolver problemas reales de seguridad en arquitecturas
REST, lo que lo convierte en una solución viable y práctica [12].

En las siguientes secciones se describen la arquitectura de la propuesta, los resultados obtenidos luego de las pruebas
y las conclusiones del caso.

2. Fundamentación teórica

2.1. Seguridad en aplicaciones web

La seguridad en aplicaciones web se refiere al conjunto de prácticas, tecnoloǵıas y poĺıticas destinadas a proteger
las aplicaciones de ataques maliciosos que buscan vulnerar la información o las funcionalidades. Entre las amenazas
comunes se encuentran ataques de inyección de SQL, cross-site scripting (XSS), cross-site request forgery (CSRF),
entre otros [13]. La seguridad en aplicaciones web se basa en principios como la autenticación y autorización de
usuarios, el cifrado de datos sensibles, la validación y sanitización de entradas, y la auditoŕıa y monitoreo continuo de
las actividades. Para mitigar riesgos, se recomienda el uso de técnicas como el cifrado HTTPS, el uso de tokens seguros,
y la implementación de firewalls espećıficos para aplicaciones web (WAFs) [14] que detecten y bloqueen actividades
sospechosas en tiempo real.

2.2. Seguridad en API REST

Las APIs REST son interfaces que permiten la comunicación entre diferentes aplicaciones de software utilizando
el protocolo HTTP. Debido a su amplia adopción en la arquitectura de microservicios y sistemas distribuidos, las
APIs REST se han convertido en un objetivo cŕıtico de los ciberataques. La seguridad en APIs REST involucra
prácticas espećıficas como la autenticación de usuarios, el uso de tokens de acceso (como JWT) [15], y la limitación de
solicitudes para prevenir abusos y mantener la disponibilidad del servicio. Además, es crucial implementar controles
de autorización para asegurar que cada solicitud tenga permisos adecuados, y adoptar poĺıticas de cifrado tanto en
tránsito como en reposo para proteger los datos sensibles. El uso de cabeceras de seguridad, como Content Security
Policy (CSP) y CORS [16], también es importante para limitar los oŕıgenes permitidos y mitigar el riesgo de ataques
desde aplicaciones de terceros.

2.3. Seguridad mediante API-GATEWAY

Un API Gateway actúa como un intermediario entre los clientes y los microservicios, gestionando todas las solicitudes
entrantes y aplicando poĺıticas de seguridad centralizadas. En términos de seguridad, el API Gateway permite controlar
de manera unificada la autenticación y autorización de las solicitudes, administrar tokens de acceso, y aplicar poĺıticas
de limitación de velocidad (rate limiting) para prevenir ataques de denegación de servicio (DoS) [17]. Además, el API
Gateway permite la integración de servicios de logging y monitoreo [18] que proporcionan visibilidad sobre el tráfico y
posibles incidentes de seguridad, permitiendo reaccionar de manera rápida ante actividades sospechosas. Esta capa de
control es esencial para implementar patrones de seguridad avanzados en arquitecturas de microservicios, reduciendo
el riesgo de exposición de datos y mejorando la resiliencia del sistema frente a ataques.

2.4. Framework Scrum

Scrum es un marco de trabajo ágil utilizado en el desarrollo de software que se basa en iteraciones llamadas sprints
para entregar productos de manera incremental. En el contexto del desarrollo de software seguro, Scrum facilita
la implementación de prácticas de seguridad de forma iterativa, permitiendo la integración de mejoras y pruebas
de seguridad en cada sprint [19]. El equipo de desarrollo trabaja en ciclos cortos y colabora estrechamente con los
interesados, lo que permite identificar y responder a requisitos de seguridad emergentes a lo largo del proyecto. Scrum
incluye roles clave como el Product Owner, el Scrum Master y el equipo de desarrollo, quienes trabajan en conjunto
para priorizar y ejecutar las tareas, asegurando que los requisitos de seguridad se integren en el producto de manera

Xavier Rea et al. IDEAS, Vol. 8, Núm. 1, 2026

continua y adaptable [20]. Además, mediante las revisiones y retrospectivas al final de cada sprint, el equipo puede
ajustar las prácticas de seguridad, garantizando que el producto final sea seguro y cumpla con las expectativas de los
usuarios y las normativas vigentes.

2.5. Norma ISO 29119

La ISO/IEC 29119 es un conjunto de estándares internacionales que define procesos, documentación y técnicas
para la gestión y ejecución de pruebas de software, proporcionando un marco de trabajo integral para asegurar la
calidad en el desarrollo de software [21]. Dividida en varias partes, la norma cubre desde los principios y vocabulario
de pruebas hasta procesos espećıficos y técnicas aplicables a diferentes tipos de pruebas, como pruebas funcionales, de
rendimiento y de seguridad, lo cual se adapta a las necesidades de validación funcional del API Gateway personalizado.

3. Diseño de la investigación

Se ha seleccionado la metodoloǵıa Design Science Research (DSR) ya que es muy utilizada para el diseño y desarrollo
de productos tecnológicos, especialmente en el campo del software [12]. La Tabla 1 presenta las fases clave de la
aplicación del enfoque de DSR en el desarrollo del gateway propuesto.

Tabla 1: Metodoloǵıa para el diseño de la propuesta

Actividad Componentes
Diagnóstico del problema Problema, objetivos
Fundamentación teórica Seguridad en aplicaciones web

Seguridad en API-REST
Seguridad a través de API-GATEWAY
Framework Scrum

Diseño del producto de software Requerimientos, proceso de diseño, implementación
Evaluación del producto Evaluación de la adecuación funcional

3.1. Identificación del problema y objetivos

Una vez que se ha definido el problema a resolver (descrito en la sección de introducción), se establecieron en esta fase
los objetivos espećıficos que el producto de software deb́ıa cumplir:

Diseñar una estructura modular y escalable que permita la integración fácil entre el API Gateway y el API
REST.

Implementar una poĺıtica de seguridad centralizada y sencilla para la autenticación de usuarios.

Establecer métricas para evaluar estos objetivos, como tiempos de respuesta, seguridad de los endpoints, y
facilidad de integración.

Se consideraron los siguientes puntos clave y limitaciones para el diseño y desarrollo de la propuesta:

El diseño y codificación se orientaron hacia el lenguaje de programación Java. El producto de software determina
un sencillo API Gateway que gestione solicitudes entrantes y redistribuya tráfico a las APIs REST de manera
segura.

Para el API Gateway personalizado, se implementan caracteŕısticas de autenticación basada en tokens, validación
de roles de usuario, registro de solicitudes (logging).

El API REST de prueba serán endpoints simples que permitan la comunicación fluida con el gateway.

En esta primera etapa no se consideran funciones de balanceo de carga para distribuir las solicitudes ni limitación
en la velocidad de acceso, ya que se desea mantener sencillez y, sobre todo, cubrir los aspectos de seguridad en
autenticación y autorización.

Xavier Rea et al. IDEAS, Vol. 8, Núm. 1, 2026

3.2. Metodoloǵıa de desarrollo de software y normativas consideradas

Scrum es un marco de trabajo ágil utilizado en el desarrollo de software que, mediante iteraciones llamadas sprints,
permite la entrega incremental de productos, facilitando la implementación iterativa de prácticas de seguridad y la
integración de mejoras y pruebas en cada ciclo [19]. Este enfoque promueve la colaboración estrecha entre el equipo
de desarrollo, el Product Owner y el Scrum Master, permitiendo identificar y responder a requisitos de seguridad
emergentes, aśı como ajustar prácticas mediante revisiones y retrospectivas, asegurando que el producto final cumpla
con expectativas y normativas [20]. Complementariamente, la ISO/IEC 29119 proporciona un marco de trabajo integral
para la gestión y ejecución de pruebas de software, definiendo procesos, documentación y técnicas que cubren desde
principios generales hasta pruebas espećıficas como funcionales, de rendimiento y de seguridad, adaptándose a las
necesidades de validación de sistemas como un API Gateway personalizado [21].

3.3. Diseño y desarrollo del producto de software

3.3.1. Definición de requerimientos funcionales

RF1 - Autenticación y autorización centralizada: El API Gateway debe autenticar a los usuarios y gestionar
permisos sin necesidad de tokens JWT (a diferencia de otras soluciones [22]), utilizando en su lugar credenciales
almacenadas en un sistema de autenticación seguro [23].

RF2 - Redirección y enrutamiento de solicitudes: El API Gateway deberá recibir todas las solicitudes entrantes
y enrutarlas de manera adecuada a los endpoints del API REST.

RF3 - Limitación de solicitudes y control de Flujo: Implementación de mecanismos de rate limiting para restringir
el número de solicitudes permitidas por cliente en un tiempo determinado, evitando aśı ataques de denegación
de servicio (DoS) [24].

RF4 - Filtrado de solicitudes maliciosas: El API Gateway debe realizar una inspección básica de las solicitudes
para detectar patrones sospechosos, como la inyección de código, y denegar el acceso en caso de identificar riesgos
de seguridad [25].

RF5 - Monitoreo y registro de actividades: El sistema debe registrar todas las solicitudes y respuestas para
monitorear el tráfico, identificar errores y posibles incidentes de seguridad.

3.3.2. Definición de requerimientos no funcionales

RNF1 - Escalabilidad y modularidad: La solución debe permitir añadir nuevos endpoints o ampliar las capaci-
dades del API Gateway sin afectar su rendimiento.

RNF2 - Bajo tiempo de respuesta: El sistema debe gestionar las solicitudes en tiempo real con un bajo tiempo
de latencia.

RNF3 - Alta disponibilidad y tolerancia a fallos: En esta primera versión, el API Gateway personalizado no
soportará resiliencia ante fallos, ni mecanismos de recuperación automática, dada la complejidad inherente a
dichas caracteŕısticas.

3.3.3. Arquitectura General

La arquitectura del sistema estará basada en tres componentes principales:

1. API Gateway (Java): Actúa como el punto de entrada principal para las solicitudes, proporcionando una capa
de seguridad y control.

2. API REST (Java): Servidor backend que expone varios endpoints para diferentes operaciones de la aplicación.

3. Base de Datos (en este caso PostgreSQL): Almacena la información de usuarios y permisos necesarios para la
autenticación y autorización centralizadas en el API Gateway personalizado.

Xavier Rea et al. IDEAS, Vol. 8, Núm. 1, 2026

3.3.4. Diagrama de Arquitectura

La arquitectura seguirá un modelo cliente-gateway-backend [26], donde el API Gateway se comunica directamente con
el API REST en función de las solicitudes recibidas. La autenticación será manejada en el gateway y almacenada en
la base de datos, lo cual se conceptualiza en la Figura 1.

Figura 1: Diagrama de arquitectura de la propuesta “Simple API-Gateway”

3.3.5. Componentes clave del API Gateway

1. Autorizador: Este componente valida las credenciales de usuario y verifica sus permisos según el endpoint soli-
citado.

2. Seguridad en el gateway: Este módulo aplicará poĺıticas de filtrado de solicitudes.

3. Controlador de enrutamiento en el gateway: Define las rutas y redirige las solicitudes hacia los endpoints ade-
cuados en la API REST.

4. API REST Backend: Contiene los endpoints para la lógica de negocio, configurado para responder exclusivamente
a solicitudes del API Gateway. Si bien esta caracteŕıstica pudiera limitar el acceso a los diferentes backends,
adiciona un nivel de seguridad a APIs de tipo empresarial, donde se requiere un acceso exclusivo.

Figura 2: Componentes internos del API Gateway

Todos los componentes del API Gateway (que se muestran en la Figura 2) han sido implementados con la tecnoloǵıa
de Java – Servlets, lo cual implica el aprovechamiento de las mejoras en las caracteŕısticas de este tipo de componentes
como uso de memoria, gestión de hilos de ejecución y técnicas anti hacking:

Pool de conexiones y caching: Se hace uso del pool de conexiones (en este caso del servidor de aplicaciones
Wildfly) para la reutilización de objetos y reducción del uso de memoria, el manejo automático de destrucción
de objetos que ya no están siendo utilizados y del recolector de basura.

Xavier Rea et al. IDEAS, Vol. 8, Núm. 1, 2026

Hilos de ejecución (threading): Cada solicitud HTTP hacia los servlets se procesa con un hilo de ejecución
separado dentro del Thread Pool gestionado por Wildfly y donde se puede configurar el máximo de hilos para
evitar un uso excesivo de CPU o memoria.

Técnicas anti hacking: Ya que los servlets soportan la generación de tokens CSRF, protecciones ante ataques
XSS e inyección de SQL, el API Gateway implementa estas funcionalidades. También se ha implementado la
técnica de restricción de solicitudes (rate limit).

3.3.6. Implementación y SCRUM

Para implementar un sistema seguro y eficiente de integración entre un API Gateway personalizado en Java y un API
REST, se ha diseñado una planificación estructurada utilizando el marco de trabajo ágil Scrum. Esta metodoloǵıa
permite dividir el proyecto en sprints iterativos, cada uno con objetivos espećıficos que van desde la configuración del
entorno y la definición de componentes de seguridad hasta la integración completa del API Gateway y el API REST.
A través de estos sprints se pudo tener una implementación ágil, adaptable y orientada a resultados. Esta planificación
garantizó la entrega de incrementos funcionales en cada iteración. La planificación de implementación en Scrum fue
la detallada en la Tabla 2:

Tabla 2: Sprints definidos para la implementación

Sprint Tareas

Sprint 1: Configuración Inicial y
Preparación del Entorno

– Configurar entorno de desarrollo en Java y JAX-RS en el IDE Eclipse.
– Configurar base de datos PostgreSQL y crear las tablas iniciales para
usuarios y roles.
– Definir estructura del proyecto, paquetes y libreŕıas necesarias.

Sprint 2: Desarrollo del API Ga-
teway - Autenticación y Seguridad
Básica

– Implementar autenticación básica en el API Gateway con validación de
credenciales en la base de datos.
– Configurar autorización y validación de roles en el API Gateway para
distintos tipos de acceso.

Sprint 3: Desarrollo de la API
REST - Endpoints y Lógica de Ne-
gocio

– Crear endpoints básicos en el API REST para el manejo de la lógica de
negocio.
– Configurar el API REST para que solo acepte solicitudes provenientes
del API Gateway.
– Implementar validaciones básicas en los endpoints para garantizar la
seguridad y consistencia de los datos.

Sprint 4: Enrutamiento y Integra-
ción entre API Gateway y API
REST

– Configurar enrutamiento en el API Gateway para redirigir solicitudes a
los endpoints del API REST.
– Realizar pruebas para verificar la correcta comunicación entre el API
Gateway y el API REST.
– Ajustar los controles de seguridad y acceso en función de los resultados
de las pruebas.

Sprint 5: Mejora de Seguridad y
Control de Flujo

– Implementar poĺıticas de rate limiting en el API Gateway para controlar
la cantidad de solicitudes.
– Añadir filtrado de solicitudes para detectar patrones de ataques comunes
en el API Gateway.
– Ajustar el sistema de registro para capturar eventos sospechosos o inci-
dentes de seguridad.

Sprint 6: Pruebas Finales
– Realizar pruebas de carga y rendimiento en el API Gateway y el API
REST.
– Documentar la arquitectura, configuración de seguridad y flujo de datos.

En el fragmento de código fuente de la Figura 3, corresponde a la implementación del API Gateway propuesto,
puede observarse una estructura modular y sencilla:

Xavier Rea et al. IDEAS, Vol. 8, Núm. 1, 2026

/**

* Implementacion de la clase Servlet SimpleApiGateway

* @author ...

*/

@WebServlet("/api/*")

public class SimpleApiGateway extends HttpServlet {

// . . .

private ManagerAutorizacion managerAutorizacion;

private FiltroSeguridad filtroSeguridad;

private ControladorRutas controladorRutas;

@Override

public void init() throws ServletException {

//inicialización de componentes

//...

Figura 3: Declaración de componentes internos del API Gateway

// Aplicar headers de seguridad HTTP

setSecurityHeaders(resp);

// 1. Validación de seguridad

if(!filtroSeguridad.validarRequest(req)) {

filtroSeguridad.logSecEvent(req, "Acceso no autorizado");

resp.sendError(SC_FORBIDDEN, "Acceso denegado");

return;

}

// 2. Autenticación y autorización

String token = req.getHeader("X-Session-Token");

String path = req.getRequestURI();

String method = req.getMethod();

if(!managerAutorizacion.isPublicEndpoint(path, method)) {

if(token==null || !managerAutorizacion.validarToken(token)) {

resp.sendError(SC_UNAUTHORIZED, "Token inválido");

return;

}

if(!managerAutorizacion.hasPermission(token, path, method)) {

resp.sendError(SC_FORBIDDEN, "Permisos insuficientes");

return;

}

}

// Generar nuevo token CSRF para solicitudes exitosas

String csrfToken=filtroSeguridad.genCSRFToken(req.getSession());

resp.setHeader("X-CSRF-Token", csrfToken);

// 3. Enrutamiento seguro

try {

controladorRutas.routeRequest(req, resp);

} catch (Exception e) {

filtroSeguridad.logSecEvent(req, "Error enrutamiento: " + e.getMessage());

resp.sendError(SC_INTERNAL_SERVER_ERROR, "Error enrutamiento");

}

...

private void setSecurityHeaders(HttpServletResponse resp) {

resp.setHeader("X-XSS-Protection", "1; mode=block");

resp.setHeader("Content-Security-Policy", "default-src ’self’");

resp.setHeader("X-Content-Type-Options", "nosniff");

resp.setHeader("Strict-Transport-Security", "max-age=31536000; includeSubDomains");

resp.setHeader("X-Frame-Options", "DENY");

}

Figura 4: Extracto del flujo principal del API Gateway propuesto

Xavier Rea et al. IDEAS, Vol. 8, Núm. 1, 2026

El código de la figura 4 muestra un enfoque de seguridad mediante múltiples capas de protección. En primer
lugar, se aplican headers de seguridad HTTP (como X-XSS-Protection, CSP y HSTS) para mitigar ataques comunes
como XSS, sniffing o clickjacking. Luego, el flujo principal valida cada solicitud en tres etapas cŕıticas: (1) un filtro
de seguridad (filtroSeguridad.validarRequest) rechaza peticiones malformadas o no autorizadas; (2) el gestor de
autorización (managerAutorizacion) verifica la autenticidad del token de sesión (X-Session-Token) y los permisos del
usuario, distinguiendo entre endpoints públicos y privados; y (3) se genera un token CSRF para prevenir falsificación
de solicitudes en operaciones exitosas. Además, aunque de una manera básica, se registran eventos de seguridad (ej.
accesos denegados) para auditoŕıa. Estas implementaciones siguen prácticas como el principio de menor privilegio y
defensa en profundidad, asegurando que el enrutamiento (controladorRutas.routeRequest) solo procese solicitudes
validadas y autorizadas.

4. Resultados

La evaluación es fundamental en DSR y debe hacerse comparando el producto con los objetivos y mediante pruebas de
rendimiento y seguridad. En la Figura 4 puede notarse la importancia de los aspectos de seguridad en el API Gateway.
Para cuantificar las pruebas de carga descritas en la Tabla 3, y de acuerdo con la norma ISO/IEC 29119, se sigue
un proceso estructurado que permite medir y documentar resultados de manera precisa y reproducible, los cuales se
resumen en la Tabla 4.

Xavier Rea et al. IDEAS, Vol. 8, Núm. 1, 2026

Tabla 3: Métricas de evaluación de rendimiento y seguridad

Métrica Descripción Cálculo Interpretación
Tiempo de respuesta Es el tiempo que el siste-

ma tarda en responder a una
solicitud desde el momento
en que se env́ıa hasta que
el cliente recibe la respues-
ta. TF: tiempo de finalización
TI: tiempo inicial

TR = TF - TI Un tiempo de respuesta bajo sugiere efi-
ciencia; los tiempos elevados pueden indi-
car cuellos de botella en el sistema.

Latencia o tiempo de
espera

Es el tiempo que una solici-
tud espera en la cola antes de
ser procesada por el sistema.
Se mide desde que la solicitud
llega al servidor hasta que el
sistema comienza a procesar-
la. TPI: tiempo inicial de pro-
cesamiento TR: tiempo de re-
cepción de la petición

L = TPI - TR Alta latencia indica que el sistema está
sobrecargado o que hay ineficiencias en la
cola de procesamiento.

Tasa de solicitudes
por segundo

Es la cantidad de solicitudes
que el sistema puede proce-
sar por segundo, una métri-
ca clave para medir la capaci-
dad del sistema. TSP: tasa de
solicitudes procesadas TTP:
tiempo de procesamiento uti-
lizado

T = TSP / TTP Un valor alto sugiere que el sistema pue-
de manejar grandes volúmenes de tráfi-
co, pero un valor que cae bajo una carga
incrementada puede indicar un ĺımite de
rendimiento.

Tasa de errores Es el porcentaje de solicitu-
des que fallan debido a errores
(códigos HTTP 4xx, 5xx) SF:
Solicitudes fallidas TS: Total
de solicitudes

TE = (SF / TS)
* 100

Una tasa de errores baja es ideal; una ta-
sa alta puede significar que el sistema no
puede manejar la carga actual o que hay
problemas de estabilidad.

Uso de recursos del
sistema

Mide el consumo de CPU
y memoria durante la prue-
ba, ya que estos recursos son
cŕıticos para la escalabilidad
y el rendimiento del sistema.
TCPU: tiempo de CPU usa-
do TT: tiempo total medi-
do MU: cantidad de memo-
ria utilizada MT: cantidad de
memoria total

%CPU = TC-
PU/TT

Un uso elevado y sostenido de
CPU/memoria puede indicar que el
sistema necesita optimización; picos sig-
nificativos sugieren que ciertos procesos
son muy intensivos en recursos.

HTTPS Uso del protocolo seguro
HTTPS

Soporta / No so-
porta

No utilizar HTTPS implica una transmi-
sión de información sobre un canal vulne-
rable.

XSS Protección ante ataques XSS
(Cross-Site Scripting)

Soporta / No so-
porta

Evitar que se inserten scripts JavaScript,
HTML u otros tipos de código en una
aplicación web.

Inyección SQL Protección ante ataques de
inyección SQL

Soporta / No so-
porta

Evitar ataques de inyección SQL

CSRF Falsificación de solicitud en-
tre sitios

Soporta / No so-
porta

Evitar ataques web que engañan a un
usuario para que realice acciones no de-
seadas en una aplicación en la que ya está
autenticado

Rate limiting Protección mediante limita-
ción a la tasa de peticiones

Soporta / No so-
porta

Evitar ataques DoS mediante la limita-
ción de llamadas.

Xavier Rea et al. IDEAS, Vol. 8, Núm. 1, 2026

Tabla 4: Resultados de las mediciones del API Gateway

Métrica Resultado Objetivo Estado
Tiempo promedio de respuesta (ms) 120 150 OK
Latencia promedio (ms) 100 150 OK
Peticiones por segundo 500 450 OK
Total de peticiones procesadas 100000 100000 OK
Tasa de errores 0.5% 0.5% OK
Uso de CPU 65% 90% OK
Uso de memoria (Mb) 524 800 OK
Máximo número de usuarios concurrentes 250 200 OK
Uso de HTTPS Soporta Soporta OK
Protección ante XSS Soporta Soporta OK
Protección ante Inyección SQL No soporta Soporta Falla
Protección ante CSRF Soporta Soporta OK
Protección mediante limitación de peti-
ciones

Soporta Soporta OK

5. Discusión

Esta primera versión del producto de software denominado Simple API Gateway (SAG) mantiene un rendimiento
adecuado para ser utilizado en un entorno controlado. Si bien no se lo ha comparado con otros API Gateways basados
en Java (como Spring Cloud Zuul [27] o Spring Cloud Gateway) que son productos enterprise-class, podemos tomar
varias referencias cuantitativas, aclarando que esta propuesta denominada SAG se presenta como una alternativa frente
al uso directo de JWT para los accesos a APIs de tipo REST.
Tiempo de respuesta y latencia: Los tiempos de respuesta promedio cumplen con los objetivos definidos, sugiriendo
que el sistema mantiene una eficiencia estable bajo carga. La latencia también se mantiene dentro de los ĺımites, lo
que indica una gestión efectiva del procesamiento.
Tasa de solicitudes por segundo: El API Gateway soporta 500 solicitudes por segundo, superando el objetivo
establecido de 450, lo que evidencia su capacidad para manejar tráfico elevado sin comprometer el rendimiento. Esta
cantidad de respuestas puede ser alta debido a que SAG directamente permite el acceso mediante una lista blanca
de IPs y un token, lo que le da una pequeña ventaja frente a JWT u otros tipos de acceso seguro [28]. Se utilizó la
herramienta Apache JMeter para obtener las mediciones respectivas [29].
Tasa de errores: La tasa de errores se mantiene baja, en un 0.5%, lo que es favorable para la estabilidad del sistema
y asegura una alta disponibilidad bajo cargas normales y moderadas.
Uso de recursos (CPU y Memoria): Aunque el uso promedio de CPU es aceptable, el pico de memoria supera el
umbral establecido (1 Mb máximo asignado), indicando un posible ajuste en la gestión de recursos u optimización en
el manejo de procesos concurrentes.
Número máximo de usuarios concurrentes: El sistema soporta hasta 250 usuarios concurrentes, superando el
objetivo de 200, lo cual es indicativo de una arquitectura robusta y bien escalada para soportar concurrencia.
Un criterio que hay que destacar es que para la implementación se usaron los componentes Java de tipo Servlets, lo cual
permite tener una alta optimización por ser componentes web de bajo nivel [30]. Probablemente otras implementaciones
realizadas en lenguajes como Lua o Jolie sean más sencillas en su arquitectura [31], pero no son lenguajes tan comunes
como Java.
Criterios de seguridad: El API Gateway implementa las protecciones indicadas en la tabla 4 porque es el único
punto de entrada visible desde el exterior, las APIs internas pueden tener configuraciones inseguras y centralizar la
seguridad reduce puntos de fallo. Al momento, el API Gateway no implementa una funcionalidad contra la inyección
SQL, debido a que no accede directamente a bases de datos, sino a configuraciones y listados de información precargada
en memoria, pero debe implementarse obligatoriamente en la siguiente fase.

6. Conclusiones y posibles trabajos futuros

Los resultados de las pruebas demuestran que el API Gateway personalizado en Java cumple con los objetivos de
rendimiento, mostrando tiempos de respuesta y latencia que permiten una experiencia fluida para los usuarios.

Xavier Rea et al. IDEAS, Vol. 8, Núm. 1, 2026

La capacidad del sistema para manejar hasta 250 usuarios concurrentes y una tasa de 200 solicitudes por segundo
sugiere que la arquitectura es adecuada para cargas significativas.

La baja tasa de errores indica una alta disponibilidad del sistema bajo condiciones de carga, lo cual es positivo
para entornos de producción. Sin embargo, la superación del ĺımite de memoria en picos sugiere la necesidad de
optimizaciones en la gestión de recursos para asegurar una escalabilidad más robusta.

La implementación de ĺımites de tasa ayudará a prevenir abusos y ataques de denegación de servicio (DoS). Un
sistema de rate limiting configurable permitirá definir ĺımites en función de la IP, usuario o endpoint, controlando
aśı el flujo de tráfico de manera más precisa.

El soporte contra ataques XSS, CSRF y el uso de HTTPS hace que el API Gateway propuesto tenga un
funcionamiento más seguro y sea confiable hacia los diversos clientes.

La ausencia de funcionalidades como logging y balanceo de carga plantea limitaciones en la capacidad del API
Gateway para gestionar situaciones cŕıticas y responder a picos de carga. La falta de un sistema de logging
también limita la visibilidad de los eventos y dificulta la identificación de problemas en tiempo real.

Trabajos Futuros

La incorporación de un sistema de logging centralizado permitirá capturar información de todas las solicitudes,
respuestas y eventos relevantes, facilitando el monitoreo y la detección de anomaĺıas en tiempo real. Esto también
permitirá auditar las actividades para mejorar la seguridad y el diagnóstico de problemas.

Desarrollar una capacidad de balanceo de carga permitirá distribuir uniformemente las solicitudes entre instancias
de servidores backend, mejorando la respuesta en momentos de alta concurrencia y previniendo la sobrecarga de
un único servidor.

Dado el uso elevado de memoria en picos, es recomendable ajustar la gestión de recursos, posiblemente mediante
el uso de técnicas de optimización de concurrencia o el ajuste en el manejo de conexiones. Esto contribuirá a
una mayor estabilidad en situaciones de máxima carga.

Incorporar una capa de caching para respuestas frecuentes reduciŕıa el tiempo de procesamiento en solicitudes
redundantes, optimizando la latencia y el uso de CPU y memoria.

Migrar el proyecto de código fuente hacia Java 22 y comprobar las nuevas actualizaciones en las poĺıticas de acceso
y permisos, algoritmos de criptograf́ıa implementados y utilizar las herramientas para verificar la integridad de
las bibliotecas y módulos utilizados en las aplicaciones.

Implementar funcionalidades para evitar inyección SQL, de manera que no se propague este ataque hacia el
backend de APIs.

Estas mejoras permitirán al API Gateway no solo ser más eficiente y escalable, sino también mejorar la resiliencia y
capacidad de monitoreo, requisitos funda-mentales para entornos de producción complejos.

Referencias

[1] M. Saad, A. Zia, M. Raza, M. Kundi, and M. Haleem, “A comprehensive analysis of healthcare websites usability
features, testing techniques and issues,” IEEE Access, vol. 10, pp. 97 701–97 718, 2022.

[2] I. Ahmad, E. Suwarni, R. I. Borman, Asmawati, F. Rossi, and Y. Jusman, “Implementation of RESTful API web
services architecture in takeaway application development,” in 2021 1st International Conference on Electronic
and Electrical Engineering and Intelligent System (ICE3IS), Oct. 2021, pp. 132–137.

[3] M. J. Haber, B. Chappell, and C. Hills, “Attack vectors,” in Cloud Attack Vectors: Building Effective Cyber-
Defense Strategies to Protect Cloud Resources, M. J. Haber, B. Chappell, and C. Hills, Eds. Berkeley, CA:
Apress, 2022, pp. 117–219.

[4] J. Gough, D. Bryant, and M. Auburn, Mastering API Architecture: Design, Operate, and Evolve API-Based
Systems. O’Reilly Media, Inc., 2021.

Xavier Rea et al. IDEAS, Vol. 8, Núm. 1, 2026

[5] M. Tomić, V. Dimitrieski, M. Vještica, R. Župunski, A. Jeremić, and H. Kaufmann, “Towards applying api
gateway to support microservice architectures for embedded systems,” 2020.

[6] C. K. Rudrabhatla, “Security design patterns in distributed microservice architecture,” arXiv, Aug. 2020.

[7] E. Ünsal, B. Öztekin, M. Çavuş, and S. Özdemir, “Building a fintech ecosystem: Design and development of a
fintech api gateway,” in 2020 International Symposium on Networks, Computers and Communications (ISNCC),
Oct. 2020, pp. 1–5.

[8] X. Zuo, Y. Su, Q. Wang, and Y. Xie, “An api gateway design strategy optimized for persistence and coupling,”
Advances in Engineering Software, vol. 148, p. 102878, Oct. 2020.

[9] S. K. Shivakumar, “Modern web integration patterns,” in Modern Web Performance Optimization: Methods,
Tools, and Patterns to Speed Up Digital Platforms, S. K. Shivakumar, Ed. Berkeley, CA: Apress, 2020, pp.
327–357.

[10] Eclipse Foundation, “Jakarta servlet specification,” [Online], 2025, accedido: 14 de marzo de 2025. [Online].
Available: https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0

[11] B. J. Chelliah, K. Sathish, and S. A. Kumar, “Service selection in service oriented architecture using probabilistic
approach and asynchronous queues with interceptor validation,” International Journal of Electrical & Computer
Engineering (2088-8708), vol. 10, no. 1, 2020.

[12] J. vom Brocke, A. Hevner, and A. Maedche, “Introduction to design science research,” in Design Science Research.
Cases, J. vom Brocke, A. Hevner, and A. Maedche, Eds. Cham: Springer International Publishing, 2020, pp.
1–13.

[13] OWASP, “Introduction - owasp top 10:2021,” [Online], 2021, accedido: 1 de noviembre de 2024. [Online].
Available: https://owasp.org/Top10/A00 2021 Introduction/

[14] R. A. Muzaki, O. C. Briliyant, M. A. Hasditama, and H. Ritchi, “Improving security of web-based application
using modsecurity and reverse proxy in web application firewall,” in 2020 International Workshop on Big Data
and Information Security (IWBIS), Oct. 2020, pp. 85–90.

[15] A. F. Nugraha, H. Kabetta, I. K. S. Buana, and R. B. Hadiprakoso, “Performance and security comparison of
json web tokens (jwt) and platform agnostic security tokens (paseto) on restful apis,” in 2023 IEEE International
Conference on Cryptography, Informatics, and Cybersecurity (ICoCICs), Aug. 2023, pp. 15–22.

[16] U. Kishnani and S. Das, “Securing the web: Analysis of http security headers in popular global websites,” arXiv,
Oct. 2024.

[17] Y. Dawei, G. Yang, H. Wei, and L. Kai, “Design and achievement of security mechanism of api gateway platform
based on microservice architecture,” Journal of Physics: Conference Series, vol. 1738, no. 1, p. 012046, Jan. 2021.

[18] A. Kondam, “Event-driven api gateways: Enabling real-time communication in modern microservices architectu-
res,” no. 2, 2024.

[19] E. D. H. Rafael, “Implementación de sistema de biblioteca basado en scrum para el manejo de libros en la
facultad de ciencias de la comunicación de la universidad nacional del centro del perú - huancayo, 2024,” Tesis
de maestŕıa, Universidad Nacional del Centro del Perú, Aug. 2024, accedido: 1 de noviembre de 2024. [Online].
Available: http://repositorio.uncp.edu.pe/handle/20.500.12894/11296

[20] G. S. Lampe, M. Olaru, M. Mafte, and C. Ilie, “Information security management system and cyber security
strategy implementation in the context of scrum,” in 7th BASIQ International Conference on New Trends in
Sustainable Business and Consumption, Aug. 2021, pp. 811–819.

[21] C. Patŕıcio, R. Pinto, and G. Marques, “A study on software testing standard using iso/iec/ieee 29119-2: 2013,” in
Recent Advances in Intelligent Systems and Smart Applications, M. Al-Emran, K. Shaalan, and A. E. Hassanien,
Eds. Cham: Springer International Publishing, 2021, pp. 43–62.

[22] F. D. Cas, “A practical approach to enhance web apis security using a stateless, open-source, pluggable
api gateway,” Master’s thesis, Politecnico di Milano, Oct. 2023, accedido: 1 de noviembre de 2024. [Online].
Available: https://www.politesi.polimi.it/handle/10589/208974

https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0
https://owasp.org/Top10/A00_2021_Introduction/
http://repositorio.uncp.edu.pe/handle/20.500.12894/11296
https://www.politesi.polimi.it/handle/10589/208974

Xavier Rea et al. IDEAS, Vol. 8, Núm. 1, 2026

[23] X. Wang, Z. Yan, R. Zhang, and P. Zhang, “Attacks and defenses in user authentication systems: A survey,”
Journal of Network and Computer Applications, vol. 188, p. 103080, Aug. 2021.

[24] L. F. Eliyan and R. D. Pietro, “Dos and ddos attacks in software defined networks: A survey of existing solutions
and research challenges,” Future Generation Computer Systems, vol. 122, pp. 149–171, Sep. 2021.

[25] K. F. M. Córdova and L. G. S. Ortiz, “Evaluación del rendimiento de firewalls de aplicaciones web open source,”
Master’s thesis, Universidad Nacional Pedro Ruiz Gallo, Mar. 2024, accedido: 1 de noviembre de 2024. [Online].
Available: http://repositorio.unprg.edu.pe/handle/20.500.12893/13572

[26] C. Richardson, “Microservices pattern: Pattern: Api gateway / backends for frontends,” microservices.io, 2024,
accedido: 1 de noviembre de 2024. [Online]. Available: http://microservices.io/patterns/apigateway.html

[27] Q. Xiong and W. Li, “Design and implementation of microservices gateway based on spring cloud zuul,” in
CIBDA 2022; 3rd International Conference on Computer Information and Big Data Applications, Mar. 2022, pp.
1–5, accedido: 24 de abril de 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9899125

[28] J. T. Zhao, S. Y. Jing, and L. Z. Jiang, “Management of api gateway based on microservice architecture,” Journal
of Physics: Conference Series, vol. 1087, no. 3, p. 032032, Sep. 2018.

[29] Apache Foundation, “Apache jmeter - apache jmeter,” [Online], 2024, accedido: 1 de noviembre de 2024.
[Online]. Available: https://jmeter.apache.org/

[30] JakartaEE, “Jakarta servlet - jakarta ee tutorial - jakarta ee documentation,” [Online], 2024, accedido: 1 de
noviembre de 2024. [Online]. Available: https://jakarta.ee/learn/docs/jakartaee-tutorial/current/web/servlets/
servlets.html

[31] F. Montesi and J. Weber, “Circuit breakers, discovery, and api gateways in microservices,” arXiv, Sep. 2016.

http://repositorio.unprg.edu.pe/handle/20.500.12893/13572
http://microservices.io/patterns/apigateway.html
https://ieeexplore.ieee.org/abstract/document/9899125
https://jmeter.apache.org/
https://jakarta.ee/learn/docs/jakartaee-tutorial/current/web/servlets/servlets.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/current/web/servlets/servlets.html

	Introducción
	La seguridad en las aplicaciones web y sus recursos

	Fundamentación teórica
	Seguridad en aplicaciones web
	Seguridad en API REST
	Seguridad mediante API-GATEWAY
	Framework Scrum
	Norma ISO 29119

	Diseño de la investigación
	Identificación del problema y objetivos
	Metodología de desarrollo de software y normativas consideradas
	Diseño y desarrollo del producto de software
	Definición de requerimientos funcionales
	Definición de requerimientos no funcionales
	Arquitectura General
	Diagrama de Arquitectura
	Componentes clave del API Gateway
	Implementación y SCRUM

	Resultados
	Discusión
	Conclusiones y posibles trabajos futuros

