
		
			
				[image:]
			

		

		
			
				[image:]
			

		

		
			
				[image:]
			

		

		
			
				[image:]
			

		

		
			
				[image:]
			

		

		
			
				[image:]
			

		

		
			
				[image:]
			

		

		
			
				[image:]
			

		

		
			
				[image:]
			

		

		
			
				[image:]
			

		

		
			
				[image:]
			

		

		
			
				[image:]
			

		

		
			
				[image:]
			

		

		
			
				[image:]
			

		

	OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la7.png
Xavier Rea et al. IDEAS, Vol. 8, Nim. 1, 2026

/%
* Implementacion de la clase Servlet SimpleApiCateway
* Qauthor ...

*/

@WebServlet ("/api/+")

public class SimpleApiGateway extends HttpServlet {
V72N

private ManagerAutorizacion managerAutorizacion;
private FiltroSeguridad filtroSeguridad;

private ControladorRutas controladorRutas;

QOverride
public void init() throws ServletException {
//inicializacién de componentes

/...

Figura 3: Declaracién de componentes internos del API Gateway

// Aplicar headers de seguridad HITP
setSecurityHeaders (resp) ;

// 1. Validacién de seguridad

if (1filtroSeguridad.validarRequest (req)) {
filtroSeguridad. logSecEvent (req, "Acceso no autorizado
resp.sendError (SC_FORBIDDEN, "Acceso denegado");
return;

¥

// 2. Autenticacién y autorizacién

String token = req.getHeader ("X-Session-Token");

String path = req.getRequestURI();

String method = req.getMethod();

if (| managerAutorizacion.isPublicEndpoint (path, method)) {

if (token==null || !managerAutorizacion.validarToken(token)) {
resp. sendError (SC_UNAUTHORIZED, "Token invalido");

return;

¥

if (ImanagerAutorizacion. hasPermission(token, path, method)) {
resp. sendError (SC_FORBIDDEN, "Permisos insuficientes");
return;

}

¥

// Generar nuevo token CSRF para solicitudes exitosas

String csrfToken=filtroSeguridad.genCSRFToken(req.getSession());

resp.setHeader ("X-CSRF-Token", csrfToken);

// 3. Enrutamiento seguro

try {

controladorRutas.routeRequest(req, resp);

} catch (Exception e) {

filtroSeguridad.logSecEvent (req, "Error enrutamiento: " + e.getMessage());
resp.sendError (SC_INTERNAL_SERVER_ERROR, "Error enrutamiento");

b3

private void setSecurityHeaders(HttpServletResponse resp) {
resp.setHeader ("X-XSS-Protection", "1; mode=block");
resp.setHeader ("Content-Security-Policy", "default-src ’self’"
resp.setHeader ("X-Content-Type-Options", "nosniff");
resp.setHeader ("Strict-Transport-Security", "max-age=31536000; includeSubDomains");
resp.setHeader ("X-Frame-Options", "DENY");
b3

Figura 4: Estracto del flujo principal del API Gateway propuesto

OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la10.png
Xavier Rea et al. IDEAS, Vol. 8, Nim. 1, 2026

Tabla 4: Resultados de las mediciones del API Gateway

Meétrica Resultado Objetivo Estado
Tiempo promedio de respuesta (ms) 120 150 OK
Latencia promedio (ms) 100 150 OK
Peticiones por segundo 500 450 OK
Total de peticiones procesadas 100000 100000 OK
Tasa de errores 0.5% 0.5% OK
Uso de CPU 65% 90 % OK
Uso de memoria (Mb) 524 800 OK
Maéximo niimero de usuarios concurrentes 250 200 OK
Uso de HTTPS Soporta Soporta OK
Proteccién ante XSS Soporta Soporta OK
Proteccién ante Inyeccién SQL No soporta Soporta Falla
Proteccién ante CSRF Soporta Soporta OK
Proteccién mediante limitacién de peti- Soporta Soporta OK
ciones

5. Discusién

Esta primera versién del producto de software denominado Simple API Gateway (SAG) mantiene un rendimiento
adecuado para ser utilizado en un entorno controlado. Si bien no se lo ha comparado con otros API Gateways basados
en Java (como Spring Cloud Zuul [27] o Spring Cloud Gateway) que son productos enterprise-class, podemos tomar
varias referencias cuantitativas, aclarando que esta propuesta denominada SAG se presenta como una alternativa frente
al uso directo de JWT para los accesos a APIs de tipo REST.

Tiempo de respuesta y latencia: Los tiempos de respuesta promedio cumplen con los objetivos definidos, sugiriendo
que el sistema mantiene una eficiencia estable bajo carga. La latencia también se mantiene dentro de los limites, lo
que indica una gestién efectiva del procesamiento.

Tasa de solicitudes por segundo: El API Gateway soporta 500 solicitudes por segundo, superando el objetivo
establecido de 450, lo que evidencia su capacidad para manejar trafico elevado sin comprometer el rendimiento. Esta
cantidad de respuestas puede ser alta debido a que SAG directamente permite el acceso mediante una lista blanca
de IPs y un token, lo que le da una pequeiia ventaja frente a JWT u otros tipos de acceso seguro [25]. Se utilizé la
herramienta Apache JMeter para obtener las mediciones respectivas [29].

Tasa de errores: La tasa de errores se mantiene baja, en un 0.5 %, lo que es favorable para la estabilidad del sistema
y asegura una alta disponibilidad bajo cargas normales y moderadas.

Uso de recursos (CPU y Memoria): Aunque el uso promedio de CPU es aceptable, el pico de memoria supera el
umbral establecido (1 Mb maximo asignado), indicando un posible ajuste en la gestién de recursos u optimizacién en
el manejo de procesos concurrentes.

Nimero méximo de usuarios concurrentes: El sistema soporta hasta 250 usuarios concurrentes, superando el
objetivo de 200, lo cual es indicativo de una arquitectura robusta y bien escalada. para soportar concurrencia.

Un criterio que hay que destacar es que para la implementacién se usaron los componentes Java de tipo Servlets, lo cual
permite tener una alta optimizacién por ser componentes web de bajo nivel [30]. Probablemente otras implementaciones
realizadas en lenguajes como Lua o Jolie sean més sencillas en su arquitectura [31], pero no son lenguajes tan comunes
como Java.

Criterios de seguridad: El API Gateway implementa las protecciones indicadas en la tabla 4 porque es el tnico
punto de entrada visible desde el exterior, las APIs internas pueden tener configuraciones inseguras y centralizar la
seguridad reduce puntos de fallo. Al momento, el API Gateway no implementa una funcionalidad contra la inyeccién
SQL, debido a que no accede directamente a bases de datos, sino a configuraciones y listados de informacién precargada
en memoria, pero debe implementarse obligatoriamente en la siguiente fase.

6. Conclusiones y posibles trabajos futuros

= Los resultados de las prucbas demuestran que el APT Gateway personalizado en Java cumple con los objetivos de
rendimiento, mostrando tiempos de respuesta y latencia que permiten una experiencia fluida para los usuarios.

OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la5.png
Xavier Rea et al. IDEAS, Vol. 8, Nim. 1, 2026

3.3.4. Diagrama de Arquitectura

La arquitectura seguiré un modelo cliente-gateway-backend [26], donde el AP Gateway se comunica directamente con
el API REST en funcién de las solicitudes recibidas. La autenticacién serd manejada en el gateway y almacenada en
la base de datos, lo cual se conceptualiza en la Figura 1.

Simple APT Gateway
Peticion validada

~”| APIREST A
——»
APIREST B

Respuesta exclusrva

Almacén
(Autorizacién - Rutas)

Figura 1: Diagrama de arquitectura de la propuesta “Simple API-Gateway”

Login / peticiones

API Gateway
(Fava)

Cliente
deAPI |
Respuesta procesada

3.3.5. Componentes clave del API Gateway

1. Autorizador: Este componente valida las credenciales de usuario y verifica sus permisos segin el endpoint soli-
citado.

2. Seguridad en el gateway: Este médulo aplicaré politicas de filtrado de solicitudes.

3. Controlador de enrutamiento en el gateway: Define las rutas y redirige las solicitudes hacia los endpoints ade-
cuados en la APT REST.

4. APT REST Backend: Contiene los endpoints para la logica de negocio, configurado para responder exclusivamente
a solicitudes del APT Gateway. Si bien esta caracteristica pudiera limitar el acceso a los diferentes backends,
adiciona un nivel de seguridad a APIs de tipo empresarial, donde se requiere un acceso exclusivo.

Flujo entre componentes

Figura 2: Componentes internos del API Gateway

Login / peticiones

—

-—
Respuesta procesads

Comsitas | Tablasen
< memoria

Todos los componentes del APT Gateway (que se muestran en la Figura 2) han sido implementados con la tecnologia
de Java — Servlets, lo cual implica el aprovechamiento de las mejoras en las caracteristicas de este tipo de componentes
como uso de memoria, gestion de hilos de ejecucion y técnicas anti hacking:

= Pool de conexiones y caching: Se hace uso del pool de conexiones (en este caso del servidor de aplicaciones
Wildfly) para la reutilizacién de objetos y reduccién del uso de memoria, el manejo automtico de destruccion
de objetos que ya no estan siendo utilizados y del recolector de basura.

OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la2.png
Xavier Rea et al. IDEAS, Vol. 8, Nim. 1, 2026

optimizado de memoria [10], lo cual permite mantener un control mas exacto sobre la ejecucién.

Adicionalmente, se contempla una forma de acceso sin depender de tokens JWT, que suele ser el mecanismo de
autenticacién ampliamente adoptado para el acceso a APIs REST. Se propone un sistema que gestiona de manera
integrada la autenticacién y la generacién de un token de sesion validado por IP, ofreciendo una alternativa que también
es segura [11] y que pueda ser utilizada en aplicaciones web.

Ademas, la combinacién de la metodologia Design Science Research (DSR) y Scrum asegura que el diseiio y la
implementacién sean iterativos, adaptativos y centrados en resolver problemas reales de seguridad en arquitecturas
REST, lo que lo convierte en una solucién viable y practica [12].

En las siguientes secciones se describen la arquitectura de la propuesta, los resultados obtenidos luego de las pruebas
¥ las conclusiones del caso.

2. Fundamentacién tedrica

2.1. Seguridad en aplicaciones web

La seguridad en aplicaciones web se refiere al conjunto de practicas, tecnologias y politicas destinadas a proteger
las aplicaciones de ataques maliciosos que buscan vulnerar la informacién o las funcionalidades. Entre las amenazas
comunes se encuentran ataques de inyeccion de SQL, cross-site scripting (XSS), cross-site request forgery (CSRE),
entre otros [13]. La seguridad en aplicaciones web se basa en principios como la autenticacién y autorizacion de
usuarios, el cifrado de datos sensibles, la validacién y sanitizacién de entradas, y la auditoria y monitoreo continuo de
las actividades. Para mitigar riesgos, se recomienda el uso de técnicas como el cifrado HTTPS, el uso de tokens seguros,
y la implementacién de firewalls especificos para aplicaciones web (WAFs) [11] que detecten y bloqueen actividades
sospechosas en tiempo real.

2.2. Seguridad en API REST

Las APIs REST son interfaces que permiten la comunicacién entre diferentes aplicaciones de software utilizando
el protocolo HTTP. Debido a su amplia adopcién en la arquitectura de microservicios y sistemas distribuidos, las
APIs REST se han convertido en un objetivo critico de los ciberataques. La seguridad en APIs REST involucra
practicas especificas como la autenticacién de usuarios, el uso de tokens de acceso (como JWT) [15], y la limitacién de
solicitudes para prevenir abusos y mantener la disponibilidad del servicio. Ademds, es crucial implementar controles
de autorizacién para asegurar que cada solicitud tenga permisos adecuados, y adoptar politicas de cifrado tanto en
transito como en reposo para proteger los datos sensibles. Bl uso de cabeceras de seguridad, como Content Security
Policy (CSP) y CORS [16], también es importante para limitar los origenes permitidos y mitigar el riesgo de ataques
desde aplicaciones de terceros.

2.3. Seguridad mediante API-GATEWAY

Un API Gateway acttia como un intermediario entre los clientes y los microservicios, gestionando todas las solicitudes
entrantes y aplicando politicas de seguridad centralizadas. En términos de seguridad, el AP Gateway permite controlar
de manera unificada la autenticacién y autorizacién de las solicitudes, administrar tokens de acceso, y aplicar politicas
de limitacién de velocidad (rate limiting) para prevenir ataques de denegacién de servicio (DoS) [17]. Ademds, el APT
Gateway permite la integracién de servicios de logging y monitoreo [15] que proporcionan visibilidad sobre el trafico y
posibles incidentes de seguridad, permitiendo reaccionar de manera rapida ante actividades sospechosas. Esta capa de
control es esencial para implementar patrones de seguridad avanzados en arquitecturas de microservicios, reduciendo
el riesgo de exposicién de datos y mejorando la resiliencia del sistema frente a ataques.

2.4. Framework Scrum

Scrum es un marco de trabajo 4gil utilizado en el desarrollo de software que se basa en iteraciones llamadas sprints
para entregar productos de manera incremental. En el contexto del desarrollo de software seguro, Scrum facilita
la implementacién de précticas de seguridad de forma iterativa, permitiendo la integracion de mejoras y prucbas
de seguridad en cada sprint [19]. El equipo de desarrollo trabaja en ciclos cortos y colabora estrechamente con los
interesados, o que permite identificar y responder a requisitos de seguridad emergentes a lo largo del proyecto. Scrum
incluye roles clave como el Product Owner, el Serum Master y el equipo de desarrollo, quienes trabajan en conjunto
para priorizar y ejecutar las tareas, asegurando que los requisitos de seguridad se integren en el producto de manera

OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la9.png
Xavier Rea et al.

IDEAS, Vol. 8, Nim. 1, 2026

Tabla 3: Métricas de evaluacion de rendimiento y seguridad

Meétrica

Descripcion

Interpretacion

Tiempo de respucsta

Latencia o tiempo de
espera

Tasa de solicitudes
por segundo

Tasa de errores

Uso de recursos del
sistema

HTTPS

XSS

Inyeccién SQL

CSRF

Rate limiting

Bs ol tiempo que el siste-
ma tarda en responder a una
solicitud desde el momento
en que se envia hasta que
el cliente recibe la respues-
ta. TF: tiempo de finalizacién
TI: tiempo inicial

Es el tiempo que una solici-
tud espera en la cola antes de
ser procesada por el sistema.
Se mide desde que la solicitud
llega al servidor hasta que el
sistema comienza a procesar-
la. TPI: tiempo inicial de pro-
cesamiento TR: tiempo de re-
cepeién de la peticién

Es la cantidad de solicitudes
que el sistema puede proce-
sar por segundo, una métri-
ca clave para medir la capaci-
dad del sistema. TSP: tasa de
solicitudes procesadas TTP:
tiempo de procesamiento uti-
lizado

Es el porcentaje de solicitu-
des que fallan debido a errores
(cédigos HTTP dxx, 5xx) SF:
Solicitudes fallidas TS: Total
de solicitudes

Mide el consumo de CPU
y memoria durante la prue-
ba, ya que estos recursos son
criticos para la escalabilidad
y el rendimiento del sistema.
TCPU: tiempo de CPU usa-
do TT: tiempo total medi-
do MU: cantidad de memo-
ria utilizada MT: cantidad de
memoria total

Uso del protocolo

HTTPS

seguro

Proteccién ante ataques XSS
(Cross-Site Scripting)

Proteccién ante ataques de
inyeccién SQL

Falsificacion de solicitud en-
tre sitios

Proteccién mediante limita-
cién a la tasa de peticiones

Cilculo

TR =TF - TI
L=TPI-TR

T = TSP / TTP
TE = (SF / TS)
*100

%CPU = TC-
PU/TT

Soporta / No
porta,

Soporta / No
porta,

Soporta / No
porta,
Soporta / No
porta,

Soporta / No
porta,

Un tiempo de respuesta bajo sugiere cfi-
cienciaj los tiempos elevados pueden indi-
car cuellos de botella en el sistema.

Alta latencia indica que el sistema estd
sobrecargado o que hay ineficiencias en la
cola de procesamiento.

Un valor alto sugiere que el sistema pue-
de manejar grandes volimenes de trafi-
co, pero un valor que cae bajo una carga
incrementada puede indicar un limite de
rendimiento.

Una tasa de errores baja es ideal; una ta-
sa alta puede significar que el sistema no
puede manejar Ia carga actual o que hay
problemas de estabilidad.

Un elevado y sostenido de
CPU/memoria puede indicar que el
sistema, necesita optimizacién; picos sig-
nificativos sugieren que ciertos procesos
son muy intensivos en recursos.

uso

No utilizar HTTPS implica una transmi-
sion de informacién sobre un canal vulne-
rable.

Evitar que se inserten scripts JavaScript,
HTML u otros tipos de codigo en una
aplicacién web.

Evitar ataques de inyeccién SQL

Evitar ataques web que engaiian a un
usuario para que realice acciones no de-
seadas en una aplicacién en la que ya estd
autenticado

Evitar ataques DoS mediante la limita-
cién de llamadas.

OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la11.png
Xavier Rea et al. IDEAS, Vol. 8, Nim. 1, 2026

Est:

La capacidad del sistema para manejar hasta 250 usuarios concurrentes y una tasa de 200 solicitudes por segundo
sugiere que la arquitectura es adecuada para cargas significativas.

= La baja tasa de errores indica una alta disponibilidad del sistema bajo condiciones de carga, lo cual es positivo
para entornos de produccién. Sin embargo, la superacién del limite de memoria en picos sugiere la necesidad de
optimizaciones en la gestion de recursos para asegurar una escalabilidad mas robusta.

« La implementacion de limites de tasa ayudard a prevenir abusos y ataques de denegacién de servicio (DoS). Un
sistema de rate limiting configurable permitira definir limites en funcién de la TP, usuario o endpoint, controlando
asi el flujo de trafico de manera més precisa.

= El soporte contra ataques XSS, CSRF y el uso de HTTPS hace que el API Gateway propuesto tenga un
funcionamiento mds seguro y sea confiable hacia los diversos clientes.

« La ausencia de funcionalidades como logging y balanceo de carga plantea limitaciones en la capacidad del APT
Gateway para gestionar situaciones criticas y responder a picos de carga. La falta de un sistema de logging
también limita la visibilidad de los eventos y dificulta la identificacién de problemas en tiempo real.

Trabajos Futuros
= La incorporacién de un sistema de logging centralizado permitird capturar informacién de todas las solicitudes,

respuestas y eventos relevantes, facilitando el monitoreo y la deteccién de anomalfas en tiempo real. Esto también
permitir auditar las actividades para mejorar la seguridad y el diagnéstico de problemas.

Desarrollar una capacidad de balanceo de carga permitird distribuir uniformemente las solicitudes entre instancias
de servidores backend, mejorando la respuesta en momentos de alta concurrencia y previniendo la sobrecarga de
un tinico servidor.

= Dado el uso elevado de memoria en picos, s recomendable ajustar la gestion de recursos, posiblemente mediante
el uso de técnicas de optimizacién de concurrencia o el ajuste en el manejo de conexiones. Esto contribuird a
una mayor estabilidad en situaciones de méxima carga.

« Incorporar una capa de caching para respuestas frecuentes reduciria el tiempo de procesamiento en solicitudes
redundantes, optimizando la latencia y el uso de CPU y memoria.

Migrar el proyecto de cdigo fuente hacia Java 22 y comprobar las nuevas actualizaciones en las politicas de acceso
¥ permisos, algoritmos de criptografia implementados y utilizar las herramientas para verificar la integridad de
las bibliotecas y médulos utilizados en las aplicaciones.

» Tmplementar funcionalidades para evitar inyeccion SQL, de manera que no se propague este ataque hacia el
backend de APIs.

as mejoras permitiran al APT Gateway 1o solo ser mas eficiente y escalable, sino también mejorar la resiliencia y

capacidad de monitoreo, requisitos funda-mentales para entornos de produccién complejos.

Referencias

1

2l

M. Saad, A. Zia, M. Raza, M. Kundi, and M. Haleem, “A comprehensive analysis of healthcare websites usability
features, testing techniques and issues,” IEEE Access, vol. 10, pp. 97 701-97 718, 2022.

1. Ahmad, E. Suwarni, R. I. Borman, Asmawati, F. Rossi, and Y. Jusman, “Implementation of RESTful API web
services architecture in takeaway application development,” in 2021 1st International Conference on Electronic
and Electrical Engineering and Intelligent System (ICESIS), Oct. 2021, pp. 132-137.

M. J. Haber, B. Chappell, and C. Hills, “Attack vectors,” in Cloud Attack Vectors: Building Effective Cyber-
Defense Strategies to Protect Cloud Resources, M. J. Haber, B. Chappell, and C. Hills, Eds. Berkeley, CA:
Apress, 2022, pp. 117-219.

J. Gough, D. Bryant, and M. Auburn, Mastering API Architecture: Design, Operate, and Evolve API-Bused
Systems. O’Reilly Media, Inc., 2021.

OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la13.png
Xavier Rea et al. IDEAS, Vol. 8, Nim. 1, 2026

[23] X. Wang, Z. Yan, R. Zhang, and P. Zhang, “Attacks and defenses in user authentication systems: A survey,”
Journal of Network and Computer Applications, vol. 188, p. 103080, Aug. 2021.

[24] L. F. Eliyan and R. D. Pietro, “Dos and ddos attacks in software defined networks: A survey of existing solutions
and research challenges,” Future Generation Computer Systems, vol. 122, pp. 149-171, Sep. 2021.

[25] K. F. M. Cérdova and L. G. S. Ortiz, “Evaluacién del rendimiento de firewalls de aplicaciones web open source,”
Master’s thesis, Universidad Nacional Pedro Ruiz Gallo, Mar. 2024, accedido: 1 de noviembre de 2024. [Onling].
Available: http://repositorio.unprg.edu.pe/handle/20.500.12893/13572

[26] C. Richardson, “Microservices pattern: Pattern: Api gateway / backends for frontends,” microservices.io, 2024,
accedido: 1 de noviembre de 2024. [Online]. Available: http://microservices.io/patterns/apigateway.html

[27] Q. Xiong and W. Li, “Design and implementation of microservices gateway based on spring cloud zuul,” in
CIBDA 2022; 3rd International Conference on Computer Information and Big Data Applications, Mar. 2022, pp.
1-5, accedido: 24 de abril de 2025. [Online]. Available: https:/ /iccexplore.iece.org/abstract /document /9899125

[28] J. T. Zhao, S. Y. Jing, and L. Z. Jiang, “Management of api gateway based on microservice architecture,” Journal
of Physics: Conference Series, vol. 1087, no. 3, p. 032032, Sep. 2018.

29] Apache Foundation, “Apache jmeter - apache jmeter, ine], 2024, accedido: 1 de noviembre de 2024.
Apache Found “Apach h » [Onl dido: 1 d bre d
[Online]. Available: https://jmeter.apache.org/

30] JakartaEE, “Jakarta servlet - jakarta ee tutorial - jakarta ee documentation” [Online], 2024, accedido: 1 de
noviembre de 2024. [Online]. Available: https://jakarta.ce/learn/docs /jakartace- tutorial /current /web /serviets/
servlets.html

[31] F. Montesi and J. Weber, “Circuit breakers, discovery, and api gateways in microservices,” arXiv, Sep. 2016.

OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la1.png
Xavier Rea et al. IDEAS, Vol. 8, Nim. 1, 2026

KEYWORDS ABSTRACT

API-Gateway, This proposal outlines the design and development of a Java-based software
APLRest, e . ;

i artifact implementing a custom API Gateway to manage security and access
mobile spplicaions, control, replacing the need for JWT token systems. The proposal encompas-
software engineering, ses the definition of functional requirements, software design and architecture,

information systems. implementation, and system deployment, aiming to offer a secure and efficient

solution for communication and control between clients and a REST APL The
Design Science Research methodology was applied, focusing on the design and
implementation process of the software product, which enables secure integra-
tion between a client and a REST APL Security in web applications and REST
API architectures is essential to protect system integrity, confidentiality, and
availability in an increasingly threat-exposed digital environment. Additionally,
the Scrum methodology facilitates agile and collaborative project management,
ideal for iteratively and adaptively implementing security solutions. During the
design and coding phases in Java, the custom API Gateway is defined to mana-
ge incoming requests and safely route traffic to REST APIs. The custom APT
Gateway incorporates features such as authentication and user role validation.
Simple endpoints are created on the REST API to ensure seamless communi-
cation with the gateway. This proposal provides a robust solution for managing
security and access control in distributed applications. By using the APT Ga-
teway, the system centralizes security and authentication efficiently, enhancing
fault tolerance and maintaining stable performance.

1. Introduccién

1.1. La seguridad en las aplicactiones web y sus recursos

En un entorno digital en constante evolucion, la seguridad en las aplicaciones web ha cobrado una importancia critica,
especialmente debido al incremento de amenazas y vulnerabilidades que afectan tanto a usuarios como a organizaciones
[1]. Las aplicaciones modernas suelen depender de arquitecturas basadas en APTs, particularmente de APIs REST [2],
que facilitan la comunicacién entre distintos servicios y dispositivos, pero también introducen nuevos vectores de
ataque que deben ser gestionados con mecanismos de seguridad avanzados [3]. En este contexto, la seguridad en las
API REST y en las aplicaciones web se convierte en un pilar fundamental para proteger la integridad de los datos y la
confidencialidad de la informacién durante la interaccion entre el cliente y el servidor. Sin embargo, la implementacién
de seguridad directamente en cada API puede ser compleja y dificil de escalar.

Una solucién efectiva y ampliamente adoptada es el uso de un APT Gateway, una capa intermedia que, ademés de
facilitar la gestion de trifico y la autenticacién centralizada, implementa politicas de seguridad que limitan y controlan
el acceso a los distintos recursos ofrecidos por las APTs REST [1]. EI APT Gateway no solo actiia como un punto de
control para la autenticacion y la autorizacién, sino que también permite la deteccién y mitigacién de amenazas en
tiempo real, ofreciendo asi una primera linea de defensa robusta contra ataques como la inyeccion de SQL, cross-
site request forgery (CSRF), cross-site seripting (XSS), los ataques de denegacién de servicio (DoS) y otros vectores
comunes en el trafico de aplicaciones web.

Aqui, el problema es la necesidad de controlar de manera unificada la autenticacién y autorizacién de solicitudes en
entornos distribuidos. Un APT Gateway personalizado es necesario, ya que existen limitaciones en soluciones existentes
[5] o tienen desafios especificos en la seguridad y control de acceso [6] que un disefio a medida podria resolver [7]. La
motivacién radica en mejorar la seguridad y experiencia del usuario en sistemas que usan RESTful APIs, aprovechando
la arquitectura que propone un intermediario representado por el API-Gateway.

La integracién efectiva entre un API Gateway y las APIs REST subyacentes es crucial para maximizar la seguridad
y garantizar un flujo de comunicacién seguro, controlado y auditado. Este articulo explora los principales aspectos de
seguridad en aplicaciones web, la proteccion en APTs REST, las ventajas y desafios de implementar un APT Gateway
[5] v las mejores practicas [J] para lograr una integracion segura y eficiente entre un API Gateway y las APIs REST,
contribuyendo asi al desarrollo de arquitecturas de seguridad en entornos de aplicaciones web.

El objetivo principal de este trabajo y como una contribucién, respecto a otros APT Gateway existentes, radica
en la implementacién sencilla de un API Gateway personalizado utilizando Serviets en Java, beneficiandose de va-
rias caracteristicas de bajo nivel como ejecucién asincrona y en hilos separados, uso de pools de recursos y manejo

OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la6.png
Xavier Rea et al.

« Hilos de ejecucién (threading): Cada solicitud HTTP hacia los servlets se procesa con un hilo de ejecucion
separado dentro del Thread Pool gestionado por Wildfly y donde se puede configurar el méximo de hilos para

IDEAS, Vol. 8, Nim. 1, 2026

evitar un uso excesivo de CPU o memoria.

» Técnicas anti hacking: Ya que los servlets soportan la generacién de tokens CSRF, protecciones ante atacues
XSS e inyeccién de SQL, el API Gateway implementa estas funcionalidades. También se ha implementado la

técnica de restriccién de solicitudes (rate limit).

3.3.6. Implementacién y SCRUM

Para implementar un sistema seguro y eficiente de integracion entre un APT Gateway personalizado en Java y un APT
REST, se ha diseiiado una planificacién estructurada utilizando el marco de trabajo agil Scrum. Esta metodologia
permite dividir el proyecto en sprints iterativos, cada uno con objetivos especificos que van desde la configuracién del
entorno y la definicién de componentes de seguridad hasta la integracién completa del APT Gateway y el API REST.
A través de estos sprints se pudo tener una implementacién agil, adaptable y orientada a resultados. Esta planificacién
garantizé la entrega de incrementos funcionales en cada iteracién. La planificacién de implementacién en Serum fue

la detallada en la Tabla 2:

Tabla 2: Sprints definidos para la implementacién

Sprint

Tareas

Sprint 1: Configuracién Inicial y
Preparacién del Entorno

Sprint 2: Desarrollo del API Ga-
teway - Autenticacién y Seguridad
Bésica

Sprint 3: Desarrollo de la API
REST - Endpoints y Légica de Ne-
gocio

Sprint 4: Enrutamiento y Integra-
cién entre API Cateway y API
REST

Sprint 5: Mejora de Seguridad y
Control de Flujo

Sprint 6: Pruebas Finales

~ Configurar entorno de desarrollo en Java y JAX-RS en el IDE Eclipse.
~ Configurar base de datos PostgreSQL y crear las tablas iniciales para
usuarios y roles.

~ Definir estructura del proyecto, paquetes y librerias necesarias.

~ Implementar autenticacién basica en el API Gateway con validacion de
credenciales en la base de datos.

~ Configurar autorizacién y validacién de roles en el API Gateway para
distintos tipos de acceso.

~ Crear endpoints bsicos en el APT REST para el manejo de la légica de
negocio.

~ Configurar el API REST para que solo acepte solicitudes provenientes
del APT Gateway.

~ Tmplementar validaciones bésicas en los endpoints para garantizar la
seguridad y consistencia de los datos.

~ Configurar enrutamiento en el APT Gateway para redirigir solicitudes a
los endpoints del APT REST.

~ Realizar pruebas para verificar la correcta comunicacién entre el API
Gateway y el API REST.

~ Ajustar los controles de seguridad y acceso en funcién de los resultados
de las pruebas.

~ Implementar politicas de rate limiting en el APT Gateway para controlar
la cantidad de solicitudes.

~ Afiadir filtrado de solicitudes para detectar patrones de ataques comunes
en el API Cateway.

— Ajustar el sistema de registro para capturar eventos saspechosos o inci-
dentes de seguridad.

~ Realizar pruebas de carga y rendimiento en el API Gateway y el API
REST.

~ Documentar la arquitectura, configuracién de seguridad y flujo de datos.

En el fragmento de cédigo fuente de la Figura 3, corresponde a la implementacién del API Gateway propuesto,

puede observarse una estructura modular y sencilla:

OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la3.png
Xavier Rea et al. IDEAS, Vol. 8, Nim. 1, 2026

continua y adaptable [20]. Ademas, mediante las revisiones y retrospectivas al final de cada sprint, el equipo puede
ajustar las practicas de seguridad, garantizando que el producto final sea seguro y cumpla con las expectativas de los
usuarios y las normativas vigentes.

2.5. Norma ISO 29119

La ISO/IEC 20119 es un conjunto de estandares internacionales que define procesos, documentacion y técnicas
para la gestion y ejecucién de pruebas de software, proporcionando un marco de trabajo integral para asegurar la
calidad en el desarrollo de software [21]. Dividida en varias partes, la norma cubre desde los principios y vocabulario
de pruebas hasta procesos especificos y técnicas aplicables a diferentes tipos de pruebas, como pruebas funcionales, de
rendimiento y de seguridad, lo cual se adapta a las necesidades de validacién funcional del APT Gateway personalizado.

3. Diseno de la investigacion
Se ha seleccionado la metodologia Design Science Research (DSR) ya que es muy utilizada para el disefio y desarrollo
de productos tecnolégicos, especialmente en el campo del software [12). La Tabla 1 presenta las fases clave de la

aplicacién del enfoque de DSR en el desarrollo del gateway propuesto.

Tabla 1: Metodologia para el diseiio de la propuesta

Actividad Componentes
Diagnéstico del problema Problema, objetivos
Fundamentacién teérica Seguridad en aplicaciones web

Seguridad en API-REST
Seguridad a través de APL.GATEWAY
Framework Scrum
Disefio del producto de software ~Requerimientos, proceso de disefio, implementacién
Evaluacién del producto Evaluacién de la adecuacién funcional

3.1. Identificacién del problema y objetivos

Una vez que se ha definido el problema a resolver (descrito en la seccién de introduccién), se establecieron en esta fase
los objetivos especificos que el producto de software debia cumplir:

= Disefiar una estructura modular y escalable que permita la integracién ficil entre el API Gateway y el API

REST.
« Tmplementar una politica de seguridad centralizada y sencilla para la autenticacién de usuarios.

« Establecer métricas para evaluar estos objetivos, como tiempos de respuesta, seguridad de los endpoints, y
facilidad de integracion.

Se consideraron los siguientes puntos clave y limitaciones para el diseiio y desarrollo de la propuesta:

« El diseiio y codificacién se orientaron hacia el lenguaje de programacién Java. El producto de software determina
un sencillo APT Gateway que gestione solicitudes entrantes y redistribuya trifico a las APIs REST de manera
segura.

Para el API Gateway personalizado, se implementan caracteristicas de autenticacién basada en tokens, validacién
de roles de usuario, registro de solicitudes (logging).

« Bl API REST de prucba seran endpoints simples que permitan la comunicacién fluida con el gateway.

« En esta primera etapa no se consideran funciones de balanceo de carga para distribuir las solicitudes ni limitacion
en la velocidad de acceso, ya que se desea mantener sencillez y, sobre todo, cubrir los aspectos de seguridad en
autenticacién y autorizacién.

OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la4.png
Xavier Rea et al. IDEAS, Vol. 8, Nim. 1, 2026

3.2. Metodologia de desarrollo de software y normativas consideradas

Serum es un marco de trabajo agil utilizado en el desarrollo de software que, mediante iteraciones llamadas sprints,
permite la entrega incremental de productos, facilitando la implementacién iterativa de practicas de seguridad y la
integracion de mejoras y pruebas en cada ciclo [19]. Este enfoque promueve la colaboracién estrecha entre el equipo
de desarrollo, el Product Owner y el Scrum Master, permitiendo identificar y responder a requisitos de seguridad
emergentes, asi como ajustar practicas mediante revisiones y retrospectivas, asegurando que el producto final cumpla
con expectativas y normativas [20]. Complementariamente, la 1SO/IEC 29119 proporciona un marco de trabajo integral
para la gestién y ejecucién de pruebas de software, definiendo procesos, documentacién y técnicas que cubren desde
principios generales hasta pruebas especificas como funcionales, de rendimiento y de seguridad, adapténdose a las
necesidades de validacion de sistemas como un API Gateway personalizado [21].

3.3. Diseno y desarrollo del producto de software
3.3.1. Definicién de requerimientos funcionales
« RF1 - Autenticacién y autorizacién centralizada: El API Gateway debe autenticar a los usuarios y gestionar

permisos sin necesidad de tokens JWT (a diferencia de otras soluciones [27]), utilizando en su lugar credenciales
almacenadas en un sistema de autenticacién seguro [23].

» RF2 - Redireccién y enrutamiento de solicitudes: El APT Gateway debera recibir todas las solicitudes entrantes
y enrutarlas de manera adecuada a los endpoints del APT REST.

= RF3 - Limitacién de solicitudes y control de Flujo: Implementacién de mecanismos de rate limiting para restringir
el niimero de solicitudes permitidas por cliente en un tiempo determinado, evitando asf ataques de denegacién
de servicio (DoS) [21].

« RF4 - Filtrado de solicitudes maliciosas: EI APT Gateway debe realizar una inspeccién basica de las solicitudes
para detectar patrones sospechosos, como la inyeccién de cédigo, y denegar el acceso en caso de identificar riesgos
de seguridad [25].

« RF5 - Monitoreo y registro de actividades: El sistema debe registrar todas las solicitudes y respuestas para
monitorear el tréfico, identificar errores y posibles incidentes de seguridad.

3.3.2. Definicién de requerimientos no funcionales

= RNF1 - Escalabilidad y modularidad: La solucién debe permitir afiadir nuevos endpoints o ampliar las capaci-
dades del APT Gateway sin afectar su rendimiento.

= RNF2 - Bajo tiempo de respuesta: El sistema debe gestionar las solicitudes en tiempo real con un bajo tiempo
de latencia.

= RNF3 - Alta disponibilidad y tolerancia a fallos: En esta primera version, el API Gateway personalizado no
soportard resiliencia ante fallos, ni mecanismos de recuperacién automética, dada la complejidad inherente a
dichas caracteristicas.

3.3.3. Arquitectura General

La arquitectura del sistema estara basada en tres componentes principales:

1. API Gateway (Java): Acttia como el punto de entrada principal para las solicitudes, proporcionando una capa
de seguridad y control.

2. API REST (Java): Servidor backend que expone varios endpoints para diferentes operaciones de la aplicacién.

3. Base de Datos (en este caso PostgreSQL): Almacena la informacién de usuarios y permisos necesarios para la
autenticacién y autorizacién centralizadas en el APT Gateway personalizado.

OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la12.png
Xavier Rea et al. IDEAS, Vol. 8, Nim. 1, 2026

[5] M. Tomi¢, V. Dimitrieski, M. Vjestica, R. Zupunski, A. Jeremi¢, and H. Kaufmann, “Towards applying api
gateway to support microservice architectures for embedded systems,” 2020.

[6] C. K. Rudrabhatla, “Security design patterns in distributed microservice architecture,” arXiv, Aug. 2020.

[7] E. Unsal, B. Oztekin, M. Gavus, and S. Ozdemir, “Building a fintech ecosystem: Design and development of a
fintech api gateway,” in 2020 International Symposium on Networks, Computers and Communications (ISNCC),
Oct. 2020, pp. 1-5.

18] X. Zuo, Y. Su, Q. Wang, and Y. Xie, “An api gateway design strategy optimized for persistence and coupling,”
Advances in Engineering Software, vol. 148, p. 102878, Oct. 2020.

[9] S. K. Shivakumar, “Modern web integration patterns,” in Modern Web Performance Optimization: Methods,
Tools, and Patterns to Speed Up Digital Platforms, S. K. Shivakumar, Ed. Berkeley, CA: Apress, 2020, pp.
327-357.

[10] Edlipse Foundation, “Jakarta servlet specification,” [Online], 2025, accedido: 14 de marzo de 2025. [Online].
Available: https://jakarta.ce/specifications /servlet/6.0 /jakarta-servlet-spec-6.0
[11] B. J. Chelliah, K. Sathish, and S. A. Kumar, “Service selection in service oriented architecture using probabilistic

approach and asynchronous queues with interceptor validation,” International Journal of Electrical & Computer
Engineering (2088-8708), vol. 10, no. 1, 2020.

[12] J. vom Brocke, A. Hevner, and A. Maedche, “Introduction to design science research,” in Design Science Research.
Cases, J. vom Brocke, A. Hevner, and A. Maedche, Eds. Cham: Springer International Publishing, 2020, pp.
1-13.

[13] OWASP, “Introduction - owasp top 10:2021, [Online], 2021, accedido: 1 de noviembre de 2024. [Onling].
Available: https://owasp.org/Top10/A00_2021 Introduction/

[14] R. A. Muzaki, O. C. Briliyant, M. A. Hasditama, and H. Ritchi, “Improving security of web-based application
using modsecurity and reverse proxy in web application firewall,” in 2020 International Workshop on Big Data
and Information Security (IWBIS), Oct. 2020, pp. 85-90.

[15] A. F. Nugraha, H. Kabetta, I K. S. Buana, and R. B. Hadiprakoso, “Performance and security comparison of
json web tokens (jwt) and platform agnostic security tokens (paseto) on restful apis,” in 2023 [EEE International
Conference on Cryptography, Informatics, and Cybersecurity (ICoCICs), Aug. 2023, pp. 15-22.

[16] U. Kishnani and S. Das, “Securing the web: Analysis of http security headers in popular global websites,” arXiv,
Oct. 2024.

[17] Y. Dawei, G. Yang, H. Wei, and L. Kai, “Design and achievement of security mechanism of api gateway platform
based on microservice architecture,” Journal of Physics: Conference Series, vol. 1738, no. 1, p. 012046, Jan. 2021.

[18] A. Kondam, “Event-driven api gateways: Enabling real-time communication in modern microservices architectu-
res,” mo. 2, 2024.

[19] E. D. H. Rafael, “Implementacién de sistema de biblioteca basado en scrum para el manejo de libros en la
facultad de ciencias de la comunicacién de la universidad nacional del centro del perii - huancayo, 2024,” Tesis
de maestria, Universidad Nacional del Centro del Perii, Aug. 2024, accedido: 1 de noviembre de 2024. [Online].
Available: http://repositorio.uncp.edu.pe/handle/20.500.12894/11206

[20] G. S. Lampe, M. Olaru, M. Mafte, and C. Tlie, “Information security management system and cyber security
strategy implementation in the context of scrum,” in 7th BASIQ International Conference on New Trends in
Sustainable Business and Consumption, Aug. 2021, pp. 811-819.

[21] C. Patricio, R. Pinto, and G. Marques, “A study on software testing standard using iso/iec/ieee 20119-2: 2013,” in
Recent Advances in Intelligent Systems and Smart Applications, M. Al-Emran, K. Shaalan, and A. E. Hassanien,
Eds. Cham: Springer International Publishing, 2021, pp. 43-62.

[22) F. D. Cas, “A practical approach to enhance web apis security using a stateless, open-source, pluggable
api gateway,” Master’s thesis, Politecnico di Milano, Oct. 2023, accedido: 1 de noviembre de 2024. [Online].
Available: https://www.politesi.polimi.it/handle/10589 /208974

OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la8.png
Xavier Rea et al. IDEAS, Vol. 8, Nim. 1, 2026

El cédigo de la figura 4 muestra un enfoque de seguridad mediante miltiples capas de proteccién, En primer
lugar, se aplican headers de seguridad HTTP (como X-XSS-Protection, CSP y HSTS) para mitigar ataques comunes
como XSS, sniffing o clickjacking. Luego, el flujo principal valida cada solicitud en tres etapas criticas: (1) un filtro
de seguridad (£iltroSeguridad.validarRequest) rechaza peticiones malformadas o no autorizadas; (2) el gestor de
autorizacién (nanagerAutorizacion) verifica la autenticidad del token de sesién (X-Session-Token) y los permisos del
usuario, distinguiendo entre endpoints piblicos y privados; y (3) se genera un token CSRF para prevenir falsificacién
de solicitudes en operaciones exitosas. Ademas, aunque de una manera basica, se registran eventos de seguridad (cj.
accesos denegados) para auditorfa. Estas implementaciones siguen practicas como el principio de menor privilegio y
defensa en profundidad, asegurando que el enrutamiento (controladorRutas. routeRequest) solo procese solicitudes
validadas y autorizadas.

4. Resultados

La evaluacién es fundamental en DSR y debe hacerse comparando el producto con los objetivos y mediante pruebas de
rendimiento y seguridad. En la Figura 4 puede notarse la importancia de los aspectos de seguridad en el APT Gateway.
Para cuantificar las pruebas de carga descritas en la Tabla 3, y de acuerdo con la norma ISO/IEC 20119, se sigue
un proceso estructurado que permite medir y documentar resultados de manera precisa y reproducible, los cuales se
resumen en la Tabla 4.

OEBPS/image/Desarrollo_de_un_API_gateway_personalizado_y_ligero_en_Java_para_la.png
Innovation & Development in Engineering
and Applied Science

-
I D E AS Journal homepage: https://revistasojs.utn.edu.ec/index .php/ideas

Desarrollo de un API gateway personalizado y ligero en Java para la
gestion segura de acceso y enrutamiento en APIs REST

Development of a Lightweight and Custom API Gateway in Java for Secure Access Management
and Routing in REST APIs

Xavier Mauricio Rea-Pefiafiel! ©, José Antonio Quifia-Meral? ©, Diego Javier Trejo-Espafia! ©

! Facultad de Ingenierfa en Ciencias Aplicadas, Universidad Técnica del Norte, Cdla. Universitaria El Olivo, Ibarra, Ecuador
2 Grupo de Investigacion Ciencias en Red eCIER, Universidad Técnica del Norte

Enviado: 2024-11-10, Aceptado: 2025-07-28, Publicado: 2026-01-30
Autor de correspondencia:

Xavier Rea: mrea@utn.edu.ec

DOI: 10.53358/ideas.v8i1.1171

ZOSOK]

PALABRAS CLAVE RESUMEN
APL-Gateway, Esta propuesta describe el disefio y desarrollo de un producto de software en
ety Java implement API Gat alizad ti 1
e eloctronica, que implemente un ateway personalizado para gestionar la segu-
seguridad, ridad y control de acceso en lugar de utilizar un sistema de tokens JWT. La
aplicaciones maéviles, N L, O N N

ingenierfa de software, propuesta incluye la definicién de requerimientos funcionales, el disefio de soft-

sistemas de informacion. ware y su arquitectura, la implementacion y la puesta en marcha del sistema,

con el objetivo de ofrecer una solucion segura y eficiente para la comunicacién
y control entre los clientes y una APT REST. Se aplicé la metodologia de De-
sign Science Research, centrandose en el proceso de diseiio e implementacién
del producto de software en Java que permita la integracién segura entre un
cliente y una API REST. La seguridad en aplicaciones web y en arquitecturas
de APTs REST es fundamental para proteger la integridad, confidencialidad y
disponibilidad de los sistemas en un entorno digital cada vez més expuesto a
amenazas. A su vez, la metodologia Scrum permite gestionar proyectos de de-
sarrollo de software de manera agil y colaborativa, lo cual resulta ideal para
implementar soluciones de seguridad de forma iterativa y adaptativa. Luego, en
la fase de disefio y codificacion del software en Java, se define que el APT Gate-
way personalizado debe gestionar solicitudes entrantes y redistribuir el tréfico
a las APIs REST de manera segura. Para ello, el APT Gateway personalizado
implementa caracteristicas como autenticacién y validacién de roles de usuario.
En la APTREST se crean endpoints simples que permitan la comunicacién flui-
da con el gateway. Hsta propuesta ofrece una solucién robusta para la gestion
de la seguridad y el control de acceso en aplicaciones distribuidas. Al utilizar la
APT el sistema centraliza la seguridad y la autenticacién de manera eficiente,
mejorando la resistencia ante fallos y manteniendo un rendimiento estable.

