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The use of drones and open-source software in Species Distribution Models
(SDMs) represents an innovative approach for the study of wildlife fauna. This
article reviews the current state of the art regarding their integration, identif-
ying trends, challenges, and opportunities.
The methodology followed the PRISMA guidelines and included a literature
search in databases such as Scopus, Web of Science, and Google Scholar. Articles
published within the last decade were selected if they addressed the use of drones
in wildlife monitoring and the application of open-source tools in spatial data
analysis.
The results show a significant increase in the use of drones to collect precise
geospatial data, improving the identification of habitats and species distribution
patterns. Tools such as QGIS, R, and MaxEnt enable data processing without
licensing costs, promoting accessibility and scientific reproducibility.
However, challenges remain in terms of methodological standardization, integra-
tion of heterogeneous data sources, and limited detection capability for certain
species. Variability in image quality and environmental conditions also affects
the accuracy of results.
In conclusion, the combination of drones and open-source software offers clear
benefits: it enhances efficiency, improves model accuracy, and reduces costs.
Nevertheless, greater standardization and technical validation are required to
optimize its application in ecology and conservation.
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PALABRAS CLAVE RESUMEN
Drones,
unmanned aerial vehicle (UAV),
topograf́ıa,
resolución,
reserva ecológica,
bosque protegido,
análisis geoespacial,
seguimiento de la fauna silvestre,
precisión,
modelo de distribución.

El uso de drones y software libre en Modelos de Distribución de Especies (MDE)
representa una alternativa innovadora para el estudio de la fauna silvestre. Este
art́ıculo revisa el estado del arte sobre su integración, identificando tendencias,
desaf́ıos y oportunidades.
La metodoloǵıa siguió las directrices PRISMA, con búsqueda en bases como
Scopus, Web of Science y Google Scholar. Se seleccionaron art́ıculos publicados
en la última década que aborden el uso de drones en monitoreo fauńıstico y el
empleo de herramientas libres en análisis espacial.
Los resultados muestran un aumento notable en el uso de drones y tyopograf́ıa
para obtener datos geoespaciales precisos, lo que mejora la identificación de
hábitats y patrones de distribución. Herramientas como QGIS, R y MaxEnt
permiten procesar estos datos sin costos de licencia, fomentando la accesibilidad
y reproducibilidad cient́ıfica.
No obstante, persisten desaf́ıos en la estandarización metodológica, fusión de
datos heterogéneos y detección limitada de ciertas especies. La variabilidad en
calidad de imágenes y condiciones ambientales también afecta los resultados.
En conclusión, la combinación de drones y software libre ofrece beneficios claros:
mejora la eficiencia, aumenta la precisión de los modelos y reduce costos. Sin
embargo, se requiere mayor estandarización y validación técnica para optimizar
su aplicación en ecoloǵıa y conservación.

1. Introduction

Species Distribution Models (SDMs) help to identify and protect areas rich in biodiversity and predict changes in
species distribution due to factors such as climate conditions, habitat alteration by human influence or other invasive
species. In general, forest ecosystems are exposed to a wide variety of environmental, social and economic pressures
that challenge their sustainability on a planetary scale.

The biodiversity they harbor can respond in many ways to these pressures, generating variable and complex impacts.
Therefore, it is necessary to anticipate such impacts and future challenges with appropriate, proactive and adaptive
management [1]. In this context, the efforts of researchers try to conceive increasingly efficient SDMs, incorporating
computer vision techniques oriented to the analysis and processing of images of natural environments, since the
objective is precisely the conservation of species in their habitat, allowing the interpretation and prediction of species
situations.

For example, a recent study [2] demonstrates how advanced AI algorithms, such as Maximum Entropy (MaxEnt)
and Random Forest (RF), can integrate large environmental and biological datasets to clearly predict species distri-
butions. Likewise, other recent studies have demonstrated the importance of predictive models for the conservation of
species such as the mountain tapir [3]. The Journal of the Royal Society Interface introduced a distribution model for
multiple species that operates on presence-only data, which is valuable for maximizing the use of global biodiversity
databases such as GBIF [4].

On the other hand, there is the problem of obtaining satellite images, which usually involves considerable expense,
limiting accessibility for research projects, especially in developing countries. For example, commercial satellite images
obtained from WorldView-3 provide high resolution, but the high cost restricts their use in ecological studies [5]. In
response to this, several studies are encouraging the use of drones [6, 7, 8, 9].

Drone imagery, as an alternative to satellite imagery, offers several advantages in terms of accuracy and cost, but
its inappropriate use, such as frequent flights at noticeable heights of noise and vision, can generate unexpected wildlife
behaviors. Drones can capture high-resolution imagery needed to detect small species and perform detailed monitoring
in specific areas [6]. In addition, they allow for real-time monitoring and data collection in low-connectivity conditions,
which is crucial for the study of remote and hard-to-reach areas [7]. These capabilities would most likely improve the
efficiency and accuracy of SDMs, enabling informed decision-making for biodiversity conservation and management.

Several studies have confirmed that the use of drones with machine learning (ML) algorithms improves wildlife
detection, reducing reliance on manual assessments and increasing the accuracy of the data collected. This techno-
logy not only facilitates obtaining accurate data at lower cost, but also minimizes disturbance to monitored species,
significantly improving conservation efforts [10]. The integration and processing of images obtained from drones using
MaxEnt algorithms and their subsequent advanced analysis in R can be convenient to develop a detailed SDM.
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The objective of the systematic literature review is to provide a method to assess variability in the conduct of
studies and data analysis, identify and summarize studies already conducted, measure the consistency and quality of
results, and target knowledge gaps to be investigated, using a systematic literature review approach in drone-based
SDMs.

This paper presents proposals for future research in terms of the methods used, the systematic use of drones and
satellites in data collection, the identification of best practices, and the establishment of standards to ensure the
reproducibility and accuracy of SDM studies. The first part of this document details the importance and necessity of
conducting a Systematic Literature Review for the development of SDMs. In the second part, the relevant definitions
of the elements that compose the development and implementation of an SDM using data obtained from drones and
analyzed with R software are presented.

Then, in the third part, the methodology for obtaining SDMs is described, structured in five phases derived from
five research questions. The fourth part of the paper presents the systematic review used to conceptualize the research
questions, providing a statistical summary of the literature reviewed and an analysis of similar work in the creation
of SDMs with drones. In the fifth part, the research questions are discussed through a comparative analysis between
drone-based and satellite-based imagery solutions. The paper concludes with the proposed solution.

2. Species Distribution Model

Forest ecosystems face growing environmental pressures, requiring sustainable and proactive conservation strate-
gies. Species Distribution Models (SDMs) are valuable tools for estimating species’ potential distributions and habitat
availability by analyzing ecological niches through environmental data and raster images. These models help pre-
dict responses to environmental changes and support decision-making at multiple scales, including protected area
designation and climate policies.

When built with current data and properly calibrated, SDMs can be adapted across different spatial and temporal
contexts, making them essential for biodiversity monitoring and adaptive management [11, 12].

SDMs are key tools in biodiversity and conservation, but assessing their reliability at unsampled sites is difficult,
especially where there are sampling biases [13]. There are numerous ecological niche modeling techniques, such as the
Genetic Algorithm for Rule Set Prediction (GARP) or MaxEnt, which are the most widely used and generally employ,
according to [13], two types of data:

1. Records of the occurrence of the species, such as geographical data (latitude and longitude) of the sites where
specimens have been collected or recorded.

2. Layers of variables that are related to the distribution of the species. These may be climatic (e.g., temperature,
precipitation), vegetation type, soil type, and terrain slope, among others.

SDMs use environmental data and species occurrence records to generate niche models that represent suitable
conditions such as climate, altitude, and vegetation. These models can be projected geographically to predict where
the species may occur, producing maps of potential distribution. By identifying environmental associations, SDMs
define optimal conditions for viable populations, following the BAM framework proposed by [1].

The method identifies areas with similar environmental features to known presence sites, enabling spatial predictions
based on mathematical similarity, although models retain a certain degree of uncertainty regarding species distribution
patterns of species [2].

2.1. Biotic Abiotic Movement (BAM)

The BAM method for creating an SDM begins by identifying the biology of the species, then assessing the acces-
sibility of areas, and finally incorporating environmental variables.

This allows for a holistic understanding of a species’ likely distribution, facilitating robust models for conservation
studies. The BAM diagram, as illustrated in Figure 1, is a conceptual tool for modeling species distribution, integrating
biology (B), accessibility (A), and environment (M) [14].
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Figure 1: The BAM diagram [14].

In the BAM Diagram, shown in Figure 1, the occupied area of a species (Go) is illustrated as the intersection of
its three components: the biotic (B), abiotic (A), and movements (M), as:

Go = B ∩A ∩M

The area Gi occurs at sites that are favorable both biotically and abiotically, but that the species has not been
able to access (B ∩A ∩M) [14].

2.2. Ecological niche

The ecological niche encompasses the environmental conditions and resources a species needs to survive and thrive,
including abiotic factors like temperature and humidity, and biotic factors such as food and competition [15].

Species Distribution Models (SDMs) predict a species’ geographic distribution by modeling its ecological niche
using environmental and occurrence data [2]. These models identify areas of high habitat suitability and quantify how
environmental conditions influence species presence [16].

The ecological niche and SDMs are related through their connection to species distribution, but they differ in
approach and use. The ecological niche focuses on a species’ environmental requirements in theory, whereas SDMs are
practical tools for mapping and predicting species distributions in real landscapes, aiding conservation and management
decisions [17].

2.3. Raster images

A raster is a format for storing, analyzing, and displaying geographic data. It consists of a grid of cells or pixels
arranged in rows and columns. Each cell, which can be rectangular (not necessarily square), contains information
such as coordinates and attribute values. Rasters represent continuous surfaces and recognize areas with similar
characteristics, though they do not define clear boundaries like vector polygons:

Category: land use

Magnitude: pollution, precipitation, etc.

Height: distance, slopes, orientation, mass, hydrographic basin, etc.

Spectral value: satellite images, aerial photographs, etc.

A raster image can cover an area of 100 km2 using one hundred cells, each measuring 1 km2 with equal width and
height [1]. Raster and image data are useful for a wide variety of applications. In a geographic information system
(GIS), raster and image data are typically used for the following:

Images as base maps

Raster as surface maps

Raster as thematic maps
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Raster images obtained via drones offer advantages over satellite-acquired data, as noted in studies like [18], which
highlight their higher accuracy and ability to provide continuous data representation. Additionally, [19] emphasizes the
importance of raster imagery in enhancing geospatial data storage and access to scientific information. This enables
field researchers to obtain accurate and relevant data on species. The raster (or cell-based) data model is widely used
in the GIS industry for detailed biodiversity research and assessment, as illustrated in Figure 2.

Figure 2: Network diagram illustrating the data models: CAD data, Raster/Grid, Geo-relational Vector and Triangu-
lated Irregular Grid [20].

The network diagram in Figure 2 shows how geospatial data are combined to create a Triangulated Irregular
Network (TIN). Raster and CAD data are converted into vector format to build the TIN, supporting detailed surface
analysis. This is essential for surveying and civil engineering, enabling the integration and transformation of diverse
geospatial data for advanced uses.

2.4. Drones and wildlife

Drones are aircraft that could fly unmanned and autonomously. The main advantages they offer over other methods
of wildlife monitoring are:

1. High spatial resolution, as low-altitude flight allows images to be taken in detail, and

2. High temporal resolution, as their ease of deployment allows flights to be made as frequently as desired [21].

Currently, drones are being used to study various species of fauna. In the field of ornithology, there are several
works of census of waterfowl and gregarious bird colonies, population monitoring of penguins, geese, and inspection of
raptor and corvid nests, among others [22].

Four impacts are considered in this context and are shown below:

Technological impact. By comparing the current approach to species distribution modeling using satellite
imagery with the method employing drone-based data collection, the profitability of the product obtained is
determined in terms of data availability, quality, accuracy, costs and safety.

Economic impact. It offers the ability to reduce costs associated with traveling to remote and difficult-to-
access areas [18], as well as improve processing efficiency and save time during project implementation [21].
Also, according to [6] there is an economic advantage of using data obtained by modeling images from drones
compared to the high costs associated with the acquisition of data from satellite images.

Social and scientific impact. Promotes conservation and scientific research in ecological reserves. Provides geo-
reference data of protected environments without affecting social organizations [23]. The availability of updated
data facilitates the study of biodiversity and promotes conservation in natural areas [18, 24].

Environmental impact. The widespread use of drones can disturb wildlife and damage fragile habitats, causing
stress and behavioral changes [25]. Repeated flights may harm biodiversity in areas like wetlands [26]. To reduce
impacts, establish protocols limiting flight frequency and duration [25], and conduct environmental assessments
beforehand [27]. Drone operations must be responsibly managed to avoid ecological harm [25].
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The integration of drones with SDMs represents a scientific advancement in ecological research. Drones capture high-
resolution images for detailed habitat mapping. When used with models like MaxEnt, they support climate analysis
and conservation planning.

Drones also help collect species presence and absence data, improving SDM accuracy through machine learning.
Together, these tools boost data efficiency and enable faster biodiversity conservation responses, as recent studies
demonstrate (see Table 1).

Table 1: Research works on SDM using drones and the methodology applied

Reference Drone Use Methodology Focus on SDM Species of Fauna Studied

[27] Drones are used for aerial imaging and ha-
bitat mapping, followed by SDM to analyze
and compare different climate scenarios.

Comparison of climate scenarios
using aerial imagery.

Oriental quoll (Dasyurus viverri-
nus).

[3] Drones are used to collect high-resolution
spatial data, which is then integrated with
predictive SDMs and satellite image analy-
sis.

Predictive models combined with sa-
tellite imagery.

Seagrasses (Cymodocea nodosa).

[28] Drones used to collect species presen-
ce/absence data, incorporating machine lear-
ning algorithms to improve the accuracy of
distribution models.

Machine learning algorithms to im-
prove SDM accuracy.

Various species of terrestrial fauna.

[29] Evaluation of the use of small drones for the
collection of species distribution and behavio-
ral data in different habitats.

Behavioral and distribution data co-
llection.

Birds and small mammals.

3. Materials and Methods

It is essential to look for alternatives to face the problem of the high cost of the analysis of satellite images necessary
for the generation of orthophotos and the creation of SDMs. It is also important to establish an adequate method for
the detection of specific ecosystems for each species.

Therefore, an effective identification of biodiversity patterns and their trophic chains is required. Also, it is essential
to have an accurate image analysis, without taxonomic bias, and using non-invasive mechanisms to the SDM. Based
on these concerns, five questions are posed in search of evidence, descriptively, transversally and in the field, as follows:

Q1. What tools are used for the processing and georeferencing of images from drones for the creation of SDMs?

Q2. What variables are used to promote accuracy in the development of SDMs?

Q3. How does geo-technology affect the creation of SDMs?

Q4. Which data automation methods allow for efficient creation of SDMs?

Q5. What is the feasibility of combining drones and satellites for SDM creation?

This document synthesizes the information currently available through a literature review in an orderly fashion.
For this purpose, the inclusion and exclusion criteria and the combination of terms and keywords of the project with
the search string (“accuracy” OR “distribution model” OR “ecological niches” OR “drones” OR “monitoring”) and
(“wildlife species”) are defined to obtain better results in the literature review sources: EBSCO, SCIELO, SCOPUS
and Web of Science (WoS). Research articles published from 2019 onwards are considered.

The PRISMA diagram in Figure 3 describes the process of selecting studies for a systematic review through several
phases. In the identification phase, a total of 608 records were obtained from several databases: EBSCO (62), Web of
Science (90), SciELO (22) and SCOPUS (434).

In the eligibility phase, 116 records were selected for eligibility assessment. During this phase, 492 records were
excluded for various reasons:

1. not answering the research questions,

2. not being classified, and

3. being duplicates.
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This resulted in the screening of forty-seven records. In the screening phase, ninety-one records were eliminated
because they did not answer the research questions posed. Finally, the inclusion phase culminated in the selection of
forty-seven studies for systematic review.

This meticulous process ensures that only the most relevant and high-quality studies are included, increasing the
validity and reliability of the review results. Each stage of the process is designed to reduce bias and ensure that the
included studies are relevant and meet the criteria established for the review (see Table 2).

Figure 3: Prism Diagram - Systematic Review [30].

Table 2: Summarizes two results obtained from the search and selection process of the scientific articles analyzed and
shown in Figure 3.

Search base Found (-) Rejected (-) Non-classified (-) Duplicate (-) mc/exc Accepted

EBSCO 62 33 1 9 8 11

WoS 90 68 8 0 5 9

SCIELO 22 0 22 0 0 0

SCOPUS 434 325 10 56 56 27

Total 608 426 41 25 69 47

On the other hand, in the review category there are some related articles such as the evaluation of camera trap data
using artificial intelligence, the possibility of using camera traps to measure alterations induced by climatic changes
in the activity patterns of elusive terrestrial vertebrates [31], successional habitat needs of at-risk species on privately
owned land, and the use of drone imagery and machine learning-based algorithms for data collection. However, none
of the topics presented here have already been addressed in those studies [7].
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4. Analysis of Research Questions

4.1. Tools for georeferencing and processing of drone imagery in SDM creation

The use of GPS in wildlife habitat data collection allows the monitoring of bird migration routes and has revealed
patterns critical to their survival [32]. In mammals, tracking bear territories [33] has provided valuable information on
their behavior and habitat. In addition, sea turtle tracking [34, 35] has identified feeding areas, improving conservation
strategies.

The use of camera traps allows the collection of data on the habitat of vertebrate species in wildlife studies. In
Africa, camera traps have made it possible to study how human activity affects the behavior of African elephants
in Kasungu National Park, Malawi, by assessing factors such as distance to water bodies and vegetation cover [9].
In Namibia, camera traps have been used to estimate the density and abundance of unmarked ungulates, such as
roan and sable, using Poisson binomial models [36]. Furthermore, a study on motion-based video compression has
optimized the use of camera traps in resource-limited environments, improving monitoring duration and reducing
storage requirements [37].

The combined use of camera traps, GPS, and drones has revolutionized the study of wildlife and their responses to
climate change. Camera traps have enabled the identification of behavioral patterns in species such as guenons in the
Congo, contributing to the conservation of endangered species [38]. GPS technology has been used to track migratory
movements, as in the case of raptors in Europe, providing crucial data on changes in their habitats [39]. Finally, drones
equipped with thermal cameras have been used to map coral reefs, helping to assess the impact of global warming on
these ecosystems [40].

Table 3: Tools for georeferencing and processing of images from drones in the creation of SDMs.

Appearance Tools / Programs References

Georeferencing GPS and Drone [4]

Image Processing Pix4Dmapper, Agisoft Metashape [5]

Geospatial Analysis ArcGIS, QGIS [3]

Species Distribution Modeling (SDM) MaxEnt, Random Forest [6]

Table 3 provides a detailed overview of the aspects of image processing and the various tools and techniques used in
georeferencing and image processing. In addition, relevant literature references supporting the use of these technologies
are included, thus facilitating a broader and more informed understanding of their efficacy and applicability in wildlife
conservation and study (see Figure 4).

Figure 4: Graph diagram illustrating existing methods for georeferencing and processing drone imagery in the creation
of SDMs [3].

On the other hand, it is important to emphasize that the use of images captured by drones, processed with the
MaxEnt algorithm and analyzed in R software, offers an effective solution to develop SDMs. This technique combines
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the high spatial resolution of drone imagery with the predictive capability of MaxEnt. Recent studies confirm that this
method can predict areas of high probability of species presence with an accuracy comparable to traditional methods,
but at a significantly lower cost and with greater operational flexibility.

4.2. Tools for georeferencing and processing of drone imagery in SDM creation

SDMs also attempt to predict whether a species will be present or absent in a specific area based on some environ-
mental variables; the most common environmental variables include temperature, precipitation, topography, vegetation
cover, soil type, elevation, moisture, and land use patterns.

Table 4 presents a detailed compilation of the variables used in various SDM studies employing drone imagery.
This table highlights both the independent and dependent variables used in such studies, providing a comprehensive
overview of the methodologies applied and analytical approaches adopted.

The independent variables include environmental and geographic factors such as altitude, vegetation cover, slope,
and proximity to water bodies. These variables allow us to understand how different habitat elements influence the
distribution of species. For example, studies such as [35] have used aerial imagery to capture accurate data on vegetation
and topography, which has allowed more accurate modeling of species distribution. On the other hand, the dependent
variables are usually presence/absence or abundance data of the species under study. These variables are derived
directly from field observations and analyses of images captured by drones. [6] have shown that the use of drones to
collect presence/absence data significantly improves the spatial and temporal resolution of SDMs.

The integration of these variables into models provides insight into ecological relationships and helps predict changes
in species distribution under different environmental scenarios. The accuracy and high resolution of drone imagery
facilitates the capture of fine details of the habitat, which is fundamental for the development of SDMs.

Table 4: Variables used in different SDM studies with drone imagery, highlighting independent and dependent variables.

Article / Project Independent Variables Dependent Variables Variables Not Considered

Use of drones for biodiver-
sity monitoring [41]

- Vegetation Cover
- Soil Type
- Elevation (SDM)
- Surface Temperature
- Vegetation Cover

- Species presence
- Species distribution

- Soil Moisture
- Precipitation

Analysis of bird distribu-
tion in urban areas [24]

- Land Use
- Distance to Water Bodies
- Human Pressure
- Vegetation index NDVI

- Presence of endemic plants
- Plant distribution

- Soil type
- Competition with other species

Forest health assessment
using drones [9]

- Canopy cover
- Soil type
- Soil moisture

- Tree health
- Distribution of tree species

- Elevation
- Surface Temperature

Analysis of amphibian
distribution in protected
areas [42]

- Vegetation cover
- Proximity to bodies of water

- Presence of amphibians
- Diversity of amphibian species

- Land Use
- Human Pressure

SDMs require accurate and detailed data on a variety of environmental variables. Fortunately, there are multiple
open and accessible data sources that provide information for these models. Some of the most relevant and reliable
sources for downloading data on environmental variables, the tools used, and a possible re-search project using these
databases are described below in Table 5.
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Table 5: Sources for downloading environmental data for use in SDMs.

Tool Description of the database Possible scientific project

WorldClim Global database offering high-resolution
climate data.

Species distribution modeling, precipita-
tion and historical climate analysis.

Global Biodiversity Infor-
mation Facility (GBIF)

Comprehensive source of biodiversity da-
ta including species distribution and pat-
terns.

Analysis of species distribution patterns
and their changes.

EarthExplorer (USGS) Access to satellite data and derived pro-
ducts.

Building databases, land cover, and remote
sensing analysis.

Copernicus Open Access
Hub

Provides access to high-resolution satellite
data.

Study of ecosystem dynamics and water re-
sources through remote sensing.

TerraClimate Provides climate and water balance data
on a monthly scale from 1958 to the pre-
sent.

Research on the impact of climate change
on water availability.

CHELSA High-resolution climate data from 1979 to
the present.

Species distribution modeling based on
high-resolution climate data.

Some of these sources may have restrictions and/or licenses for their use; therefore, it is advisable to review the
policies of each source before using them to obtain data [1]. After the systematic review carried out for this document,
and considering several parameters derived from multiple investigations on Species Distribution Models (SDMs),
Figure 5 illustrates the variety of data required to build an accurate and robust model.

Figure 5: Requirements for species selection and subsequent distribution model development [7]

As can be seen in Figure 5, each type of data contributes significantly to the understanding of the habitat and the
conditions necessary for the presence of the target species.

Species Occurrence Data: Provides direct information on where the species has been found, helping to define
its current and potential distribution.

Soil Data: Is vital for understanding the edaphic conditions that may favor or limit the presence of the species.

Vegetation Data: Helps identify plant associations that are critical to the species in terms of food availability,
shelter, and other ecological requirements.
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Topographic Data: Allows understanding how the topography of the area influences species distribution by
affecting factors such as solar exposure, slope, and elevation.

Climate Data: Is important for evaluating how climatic conditions, such as temperature and precipitation,
affect species distribution.

Careful selection of variables in the generation of Species Distribution Models (SDMs) is essential to improve the
robustness and transferability of the models due to their direct and indirect effects. Environmental variables, such as
climate, topography, and vegetation, determine suitable habitats for species and their geographic distribution [2]. The
inclusion of bioclimatic and edaphic variables allows for more accurate predictions of changes in species distribution
driven by factors such as climate change [8].

4.3. Impact of geo-technology on the automation of SDMs

Advanced tools such as the R software environment enable the automation of SDM construction and evaluation
processes, improving both reproducibility and analytical accuracy. In addition, the application of machine learning
techniques, such as ensemble models, has enhanced the predictive capability of SDMs by combining multiple algorithms
to increase the robustness and accuracy of predictions [9]. These advances facilitate the integration of spatial and
environmental data, thereby optimizing biodiversity management and conservation [10].

Table 6 presents in detail how geo-technology has revolutionized the automation of SDMs by providing advanced
tools for the collection and analysis of geospatial data. The combined use of drones and satellites enables the acquisition
of high-resolution imagery in near real time, leveraging the strengths of each technology. Satellites provide wide and
continuous coverage of large geographic areas and long-term datasets that support the monitoring and analysis of large-
scale environmental changes. In contrast, drones operate at low altitudes and capture very high-resolution imagery,
allowing detailed analyses of specific areas and the precise identification of microhabitats with distinct terrain features.
Furthermore, the integration of machine learning algorithms and Geographic Information Systems (GIS) facilitates
the processing of large volumes of data, optimizing the prediction of species distribution.

Table 6: Geo-technology in the automation of SDMs.

Research Study Description of the Study Impact of Geo-Technology

[11] Use of machine learning algorithms to improve
the accuracy of SDMs in Australia.

Improved accuracy and robustness of mo-
dels facilitating biodiversity management.

[12] Integration of remote sensing data and predic-
tive models to map the distribution of endemic
plants in the Swiss Alps.

Increased accuracy in the identification of
critical habitats and vulnerable species.

[13] Application of MaxEnt and high-resolution
drone data to model bird distribution in U.S.
national parks.

Real-time, high-resolution data acquisition
to optimize species conservation.

[14] Implementation of geoprocessing techniques
and satellite data to assess the impact of cli-
mate change on amphibian distribution in In-
dia.

Detailed evaluation of environmental chan-
ges and their influence on species distribu-
tion to support conservation strategies.

Figure 6 shows the relationship between geo-technology and the creation of Species Distribution Models (SDMs).
Geo-technology encompasses Geographic Information Systems (GIS), remote sensing, and photogrammetry, all of
which are fundamental for generating SDMs. GIS enables the integration and analysis of geospatial data, while remote
sensing technologies, such as satellites and drones, provide elevation and altitude-related data [43].

Photogrammetry uses aerial imagery to construct accurate topographic maps [15]. The resulting SDMs are essential
for various applications, such as urban plan-ning, environmental studies and agriculture, where specific analysis tools
are used to assess and manage the terrain [16].
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Figure 6: Relationship diagram between geo-technology and the creation of Digital Elevation Models (SDM).

4.4. Data automation methods for efficient creation of SDMs

Each method is different for a variety of reasons, as shown in Table 7, which identifies techniques, biological data
types, and environmental variable formats used in the creation of SDMs. This table highlights the differences in data
automation techniques, allowing a clear view of how each approach handles different types of biological information and
environmental variables. This comparative analysis allows understanding the applicability of each method in SDMs,
helping researchers to select the most appropriate methodology for their studies [2].

Table 7: Data automation methods for creating SDMs.

Method Techniques Used Type of Biological Da-
ta

Environmental Varia-
bles Format

Generalized Linear
Models (GLM)

Regression and sta-
tistical analysis

Presence data, abundance
data

Continuous variables, ca-
tegorical variables

MaxEnt Maximum entropy Presence data Continuous variables, ca-
tegorical variables

ML Neural Networks,
Random Forest,
SVM

Presence data, abundance
data

Continuous variables, ca-
tegorical variables

Other Data Auto-
mation Method

Machine learning
algorithms

Presence data, abundance
data

Continuous variables, ca-
tegorical variables

Other Methods Varies by method Varies by method Mainly continuous varia-
bles

Generalized Linear Models (GLM) use regression and statistical analysis techniques and are suitable for presence
and abundance data with continuous and categorical variables [2]. MaxEnt, based on the principle of maximum entropy,
is particularly effective for presence data and also handles continuous and categorical variables [17].
Machine Learning, which includes techniques such as neural networks, Random Forest and Support Vector Machines
(SVM), has been noted for its ability to handle both presence and abundance data, with continuous and categorical
environmental variables [6]. Another data automation method also uses machine learning algorithms, adapting to
presence and abundance data, and continuous and categorical variables [18]. Other methods vary according to the
technique used, but generally focus on continuous variables [11]. This diversity of methods and techniques allows a
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more appropriate selection according to the specific needs of the study and the types of data available.
The methodological approach in Species Distribution Models (SDMs) is based on the nature of the occurrence data.
The techniques used fall into three main categories. Table 8 details these categories, shows the differences in the types
of data employed, and provides specific examples of methods in each. This comparative analysis provides a better
understanding of the applicability of each technique, facilitating the selection of the most appropriate method based
on the available data and the objectives of the study.

Table 8: Categories of techniques used in the development of MOUs.

Method Category Description Type of Data Used Examples of Techniques /
Methods

References

Descriptive Based solely on presence information. Presence data First methods used in species mode-
ling.

[19]

Discriminants They require presence and absence data to
build the classifier.

Presence and absence data Generalized Linear Models (GLMs),
Support Vector Machines (SVMs)

[19, 20]

Hybrid or mixed They combine descriptive and discrimi-
nant methods, generating pseudo-absences
to improve accuracy.

Presence and pseudo-absence
data

MaxEnt with pseudo-absences [21]

The literature shows that the first automation methods used in SDM are characterized by using only presence data,
disregarding absence or background data; these methods are grouped into three types: profile, classical regression and
Machine Learning, as shown in Table 9.

Table 9: SDM automation methods Category Methods.

Category Methods Description

Profile methods BIOCLIM, ANUCLIM Classical techniques based on geographical or envi-
ronmental contexts [22].

Profile methods Mahalanobis, DOMAIN Mathematical distance methods [22].
Profile methods ENFA methodologies based on expert

opinions
Similarity-based methods and deductive approaches
[23].

Classical regression
methods

Linear regression Identification of relationships between environmental
variables and species presence [11].

Classical regression
methods

Linear regression Predictions of species distribution [11].

ML Methods Classification and Regression Trees
(CART), Artificial Neural Networks
(ANN)

Flexible nonparametric regression models including
older techniques [13].

ML Methods Random Forest (RF), Genetic Algo-
rithm for Rule Set Production (GARP),
Support Vector Machines (SVM), Ma-
ximum Entropy modelling (MaxEnt)

Popular and versatile models in the last decade [24].

The use of ML in the development of SDMs has proven to be a powerful tool for biodiversity conservation [10].
Advanced techniques such as random forests and deep neural networks allow the integration of large volumes of
environmental and species occurrence data, improving the accuracy of predictions [14]. Recent studies have shown
that the use of ML algorithms outperforms traditional methods in terms of predictive ability and handling of complex
data [9]. This facilitates the identification of critical habitats and the planning of effective conservation strategies [5].

4.5. Feasibility of combining drones and satellites to create SDMs

For example, [25] demonstrate that the synergy between drones and satellites allows obtaining SDMs with un-
precedented resolution, facilitating detailed monitoring of habitats and species in inaccessible or extensive areas. In
addition, the study of [4] highlights how the combined use of these technologies can improve species management and
conservation by providing more accurate data on their distribution and abundance.
The choice between satellite imagery and drone imagery for SDMs depends on several factors, such as required image
resolution, coverage area, cost, timeliness, detail specificity, among others. As a result, the discussion typically focuses
on the advantages and disadvantages of each technology.
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Table 10 shows the comparison between the use of drones and satellites, revealing specific advantages and disadvanta-
ges for each method in the capture of SDM data [26]. Drones offer high spatial resolution and flexibility in real-time
data capture, being more economical at small scales [27]. However, their use is limited by weather conditions and
requires flight permits [44]. Satellites, on the other hand, provide global coverage and systematic monitoring, although
at a high cost and with less detail in small areas [29].

Table 10: Comparative table of the use of drones and satellites in the creation of SDMs.

Drones Satellites Comparison References

High spatial resolution Global coverage Drones provide greater detail in small areas
compared to satellites.

[19]

Flexibility in data capture Regular and systematic monito-
ring

Drones offer flexibility while satellites provide
systematic monitoring.

[41]

Low cost of operation on a small
scale

High cost for high resolution
images

Drones are more economical on a small scale,
while satellites have high costs.

[31]

Real-time data capture Delay in obtaining data Drones allow real-time data; satellites have de-
lays.

[27]

Limited by weather conditions Reduced impact due to weather
conditions

Drones are more affected by weather than sa-
tellites.

[32]

Greater detail in small areas Less detail in small areas Drones offer greater detail in small areas; sa-
tellites cover large areas.

[29]

Flight permits required No specific permissions required Drones require flight permits, satellites do not. [44]
Coverage limited to small areas Suitable for large areas Drones have limited coverage; satellites cover

large areas.
[33]

The choice between drone or satellite imagery for developing Species Distribution Models (SDMs) depends on the
needs of the study, scale, budget and data availability. Combining both sources can provide a more complete and
accurate perspective. Drones are especially useful for identifying microhabitats and traces of small species, such as
tracks and nests, that satellite imagery does not detect [15]. This information is important [34].

5. Discussion

In the development of SDMs using MaxEnt, significant advantages over other modeling tools stand out. MaxEnt
offers high accuracy and is especially effective for working with presence-only data due to its maximum entropy
approach. Unlike logistic regression or decision trees, MaxEnt better handles nonlinear relationships and interaction
effects between variables [6]. Recent studies confirm its superior ability to model species distributions accurately and
effectively [36]. However, the choice of the modeling tool also depends on the dataset, its characteristics and the
objective of the study, where methods such as Random Forest or Boosted Regression Trees may be more appropriate
in certain contexts [6].

In addition to R, other tools such as Python are also widely used for analyzing species distribution data. However,
R offers advantages in these cases due to its extensive collection of specialized packages for ecological and biological
analyses, such as dismo and ecospat. These packages are specifically designed to handle species presence-absence
data and to develop robust predictive models. R also offers an active community and abundant resources for data
visualization and advanced statistical analysis, which facilitates interpretation and informed decision making [37].

Replication of SDMs is possible due to several scientific and methodological factors:

Methodological Consistency,

Data Quality,

Standard Algorithms,

Environmental Variables,

Code Scripts,

Documentation and Publication.
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Unlike traditional methods, SDMs are better when advanced geo-technology, such as Machine Learning, is used.
The use of ML algorithms makes it possible to manage large volumes of data and to relate environmental variables
and species presence, improving the accuracy and robustness of SDMs [38].
The combined use of satellite and drone technology largely depends on the methodology employed, the spatial coverage
required, and the climatic conditions of the study area. From a climate-related perspective, drones offer greater control
under specific weather conditions, whereas satellites provide more consistent data across varying climates. However,
the effectiveness of drone usage may be limited if proper protocols for non-invasive data collection are not followed.
Economically, the choice between drones and satellites should be guided by the project’s specific needs, aiming to
optimize resources and maximize benefits through a contextualized analysis.
This study contributes to the field of species distribution modeling by integrating drone-based remote sensing with
open-source tools to develop high-resolution ecological models [42]. Compared to traditional approaches such as
satellite-based MaxEnt or generalized linear models, the use of UAV-derived imagery combined with free and open-
source software (FOSS) allows for greater spatial precision and adaptability at local scales [45].
Unlike coarse-resolution satellite data, drone-acquired images provide fine-scale habitat details that are essential for
detecting microhabitat preferences and localized environmental changes [46]. Additionally, this approach reduces costs
and technical barriers compared to proprietary GIS platforms, promoting accessibility and reproducibility in biodiver-
sity research [47].
While conventional methods often rely on historical or interpolated environmental data, our workflow enables real-time
monitoring and rapid model updating, enhancing responsiveness to dynamic ecological conditions. This methodology
is particularly relevant for conservation planning in data-poor regions, where high-resolution, site-specific models are
needed but resources are limited [48].
Future research should focus on the integration of UAV-based remote sensing with open-source software to enhance
the accuracy and accessibility of SDMs. While UAVs offer high-resolution spatial data ideal for local-scale biodiver-
sity assessments, their full potential can only be realized through scalable workflows that combine image acquisition,
processing, and modeling in a unified framework. Recent studies have shown promising results using open-source tools
such as QGIS, GRASS GIS, and Python-based libraries (e.g., GDAL, GeoPandas, scikit-learn) for habitat mapping
and species detection [42], [49].
However, there is still a need for standardized protocols that ensure reproducibility and interoperability across plat-
forms. Additionally, future work should explore the integration of deep learning techniques with UAV imagery to
automate species classification and improve model generalization [45].
The use of freely available environmental raster layers, combined with cloud computing platforms like Google Earth
Engine, could further expand the applicability of SDMs to larger geographic areas while maintaining high resolution
[50]. These advancements will not only democratize access to advanced modeling tools but also support conservation
planning in data-poor regions.

6. Conclusions

The development of a SDM benefits the care of the environment and biodiversity development, but also the par-
ticipating areas are benefited. Thus, for example, computing is strengthened by the boost in the development and
application of advanced Machine Learning algorithms and geospatial data processing. For biology, SDMs offer tools
for understanding and predicting species distribution, aiding in biodiversity conservation and ecosystem management.
Collaboration between the two disciplines facilitates interdisciplinary approaches, improving the accuracy and appli-
cability of models in ecological and environmental studies.
Clear documentation and well-defined guidance facilitate accurate replication of studies of more species in different
ecological reserves, ensuring consistency and comparability of results. This promotes a better understanding of ecolo-
gical dynamics and contributes to the development of conservation strategies. In addition, accessibility to standardized
methodologies fosters collaboration among researchers, accelerating scientific progress and the practical application of
findings in diverse computational, ecological, and geographic contexts.
To replicate the study in another ecological reserve and for other species, it is necessary to have a clear methodology,
robust and processed data sources, machine learning tools algorithms, environmental variables and code scripts pre-
ferably in R or Python. In summary, SDM replication is based on the application of standardized methodologies, the
use of high-quality data and the implementation of widely accepted scientific algorithms and tools. This ensures that
the results obtained are reliable and comparable in different ecological scenarios.
Machine learning algorithms and data processing techniques in platforms like R and Python enable the integration
of diverse data sources. These tools not only streamline the handling of large datasets but also enhance the accuracy
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and robustness of predictive models through libraries such as scikit-learn and caret. Combining remote sensing
and environmental data significantly improves the performance of SDMs, as shown by recent studies [39]. This multi-
dimensional approach advances the analysis and interpretation of complex data in ecological and conservation studies.
The hybrid use of drones and satellites is more feasible than using either technology alone for developing SDMs. Com-
bining both allows researchers to leverage the high accuracy of drones and the broad temporal coverage of satellites
[40].
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[19] F. Fischer, É. Joetzjer, I. Maréchaux, I. F. Sun, and J. Chave, “Transferability of an individual- and trait-based
forest dynamics model: A testcase across the tropics,” bioRxiv, 2021.

[20] V. F. Frans, T. H. Oliver, T. H. August, N. J. B. Isaac, and L. V. Dicks, “Integrated sdm database: Enhancing
the relevance and utility of species distribution models in conservation management,” Methods in Ecology and
Evolution, vol. 13, no. 1, pp. 243–261, 2022.

[21] H. L. Kopsco, R. L. Smith, and S. J. Halsey, “A scoping review of species distribution modeling methods for tick
vectors,” Frontiers in Ecology and Evolution, 2022.

[22] A. Hua et al., “Protecting endangered megafauna through ai analysis of drone images in a low-connectivity setting:
a case study from namibia,” PeerJ, vol. 10, 2022.
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