Segmentation of drone-acquired agricultural images using parallel algorithms

Main Article Content

Patricia Ponce
Marco Pusdá Chulde
MacArthur Ortega Bustamante

Abstract

The images obtained with drones from a vertical perspective present important information on crops, which makes it possible to systematize various activities related to precision agriculture (AP). Sequential algorithms developed in traditional programming languages ​​consume high time and hardware resources in processing large digital images. A parallel algorithm will be developed to segment images using the OpenMP library to reduce computation times. OpenMP is a library compatible with low-level programming languages ​​that allow the implementation of parallel algorithms in C or C++ languages ​​in Linux environments for multicore architectures. The sequential algorithm to implement it through parallelism was necessary to divide into several smaller tasks and run them on several cores available on multicore processors to improve processing speed. The metrics used (execution time, acceleration, efficiency, and computational cost) allowed evaluating of the algorithms' performance with images of different dimensions, obtaining favorable results that verify the improvement of the parallel algorithm. The parallelization of sequential algorithms shows a significant reduction in execution times (66.37%) with large images and (74.73%) with small images using the maximum number of cores (8)

Downloads

Download data is not yet available.

Article Details

Section

Information and Electronic Engineering

How to Cite

Segmentation of drone-acquired agricultural images using parallel algorithms. (2023). INNOVATION & DEVELOPMENT IN ENGINEERING AND APPLIED SCIENCES, 4(2), 16. https://doi.org/10.53358/ideas.v4i2.861

References

J. M. Pajares-Martinsanz, Gonzalo; De La Cruz-García, Visión por Computador Imágenes Digitales y Aplicaciones, Paracuello. Madrid, 2008.

A. Martínez-Rodríguez., “Sistema de procesamiento de imágenes RGB aéreas para agricultura de precisión,” Univ. Cent. "Marta Abreu" Las Villas Trab. DIPLOMA, p. 54, 2016.

J. Fang, C. Huang, T. Tang, and Z. Wang, “Parallel programming models for heterogeneous many-cores: a comprehensive survey,” CCF Trans. High Perform. Comput., vol. 2, no. 4, pp. 382–400, 2020, https://doi.org/10.1007/s42514-020-00039-4.

G. Barlas, “Chapter 1 - Introduction,” in Multicore and GPU Programming, G. Barlas, Ed. Boston: Morgan Kaufmann, 2015, pp. 1–26.

M. Pusdá-Chulde, A. De Giusti, E. Herrera-Granda, and I. García-Santillán, “Parallel CPU-Based Processing for Automatic Crop Row Detection in Corn Fields,” in Artificial Intelligence, Computer and Software Engineering Advances, 2021, pp. 239–251.

A. A. Briceño Coronado, Algoritmos paralelos de visión computacional Para reconstrucción tridimensional. México: Editorial Académica Española, 2012.

L. E. Sucar and Gómez Giovani, Visión Computacional, 1st ed. Instituto Nacional de Astrofíısica, Óptica y Electrónica, 2015.

Z. J. Czech, Introduction to Parallel Computing. Cambridge University Press, 2017.

A. Grama, A. Gupta, G. Karypis, V. Kumar, and A. Wesley, Introduction to Parallel Computing, Second Edition. Pearson Education Limited, 2003.

S. Zhang, W. Li, Z. Jing, Y. Yi, and Y. Zhao, “Comparison of Three Different Parallel Computation Methods for a Two-Dimensional Dam-Break Model,” Math. Probl. Eng., vol. 2017, p. 1970628, 2017, https://doi.org/10.1155/2017/1970628.

G. Slabaugh, R. Boyes, and X. Yang, “Multicore image processing with openMP,” IEEE Signal Process. Mag., vol. 27, no. 2, pp. 134–138, 2010, https://doi.org/10.1109/MSP.2009.935452.

E. García and F. Flego, “Agricultura de Precisión,” 2015. Accessed: Dec. 18, 2018. [Online]. Available: https://www.palermo.edu/ingenieria/downloads/pdfwebc&T8/8CyT12.pdf.

Agricultura de Precisión, “¿Qué es la Agricultura de Precisión y cómo iniciarse en ella? - Agricultura de Precision para el Desarrollo,” 2022. http://agriculturadeprecisionparaeldesarrollo.com/que-es-la-agricultura-de-precision-y-como-iniciarse-en-ella/ (accessed Sep. 19, 2022).

F. Leiva, “La agricultura de precisión: una producción más sostenible y competitiva con visión futurista,” Jan. 2003.

J. Echevarría, “Tarjetas gráficas para acelerar el cómputo complejo,” C&T - Univ. Palermo, 2008, Accessed: Mar. 06, 2018. [Online]. Available: http://www.palermo. edu/ingenieria/downloads/pdfwebc&T8/8CyT08.pdf.

M. Pusdá-Chulde, F. Salazar-Fierro, L. Sandoval-Pillajo, E. Herrera-Granda, I. García-Santillán, and A. De Giusti, Image Analysis Based on Heterogeneous Architectures for Precision Agriculture: A Systematic Literature Review, vol. 1078. 2020.

Z. Tsai, “Processing AI at the Edge: GPU, VPU, FPGA, ASIC Explained - ADLINK Blog,” ADLINK, 2021. https://blog.adlinktech.com/2021/02/19/embedded-hardware-processing-ai-edge-gpu-vpu-fpga-asic/ (accessed Sep. 21, 2022).

A. P. Marques Ramos et al., “A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices,” Comput. Electron. Agric., vol. 178, no. September, p. 105791, 2020, https://doi.org/10.1016/j.compag.2020.105791.

V. Partel, S. Charan Kakarla, and Y. Ampatzidis, “Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence,” Comput. Electron. Agric., vol. 157, no. November 2018, pp. 339–350, 2019, https://doi.org/10.1016/j.compag.2018.12.048.

I. García-Santillán and G. Pajares, “Detección automática de líneas de cultivo: estado del arte y futuras perspectivas,” Av. y Apl. Sist. Intel. y nuevas Tecnol., no. 54, pp. 381–398, 2016.

B. Li et al., “Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging,” ISPRS J. Photogramm. Remote Sens., vol. 162, no. December 2019, pp. 161–172, 2020, https://doi.org/10.1016/j.isprsjprs.2020.02.013.

D. Beltrán, “Automatización en la Agricultura: un caso de aplicación artificial , control de calidad en semilleros,” 2014, no. September, pp. 1–7, https://doi.org/10.13140/2.1.1299.3922.

D. C. Garcia, G. Á. Martínez, and M. E. Garcia, “Raspberry Pi y Arduino: semilleros en innovación tecnológica para la agricultura de precisión,” Informática y Sist. Rev. Tecnol. la Informática y las Comun., vol. 2, no. 1, pp. 74–82, Jan. 2018, https://doi.org/10.33936/ISRTIC.V2I1.1134.

P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, and I. Moscholios, “A compilation of UAV applications for precision agriculture,” Comput. Networks, vol. 172, no. February, p. 107148, 2020, https://doi.org/10.1016/j.comnet.2020.107148.

A. Mukherjee, S. Misra, and N. S. Raghuwanshi, “A survey of unmanned aerial sensing solutions in precision agriculture,” J. Netw. Comput. Appl., vol. 148, p. 102461, 2019, https://doi.org/10.1016/j.jnca.2019.102461.

HEMAV, “Teledetección con drones Vs Teledetección satelital,” 2022. https://hemav.com/agricultura-de-precision-teledeteccion-satelital-vs-teledeteccion-con-drones/ (accessed Sep. 19, 2022).

Z. Luo, W. Yang, Y. Yuan, R. Gou, and X. Li, “Semantic segmentation of agricultural images: A survey,” Inf. Process. Agric., Feb. 2023, https://doi.org/10.1016/J.INPA.2023.02.001.

M. Jaroš et al., “Implementation of K-means segmentation algorithm on Intel XePhi and GPU: Application in medical imaging,” Adv. Eng. Softw., vol. 103, pp. 21–28, 2017, https://doi.org/10.1016/j.advengsoft.2016.05.008.

E. Raei, A. Akbari Asanjan, M. R. Nikoo, M. Sadegh, S. Pourshahabi, and J. F. Adamowski, “A deep learning image segmentation model for agricultural irrigation system classification,” Comput. Electron. Agric., vol. 198, p. 106977, Jul. 2022, https://doi.org/10.1016/J.COMPAG.2022.106977.

Eclipse, “Eclipse IDE for Scientific Computing,” 2022. https://www.eclipse.org/downloads/packages/release/2022-12/r/eclipse-ide-scientific-computing (accessed Oct. 02, 2022).

A. A. Briceño-Coronado, “Algoritmos paralelos de visión computacional para reconstrucción tridimensional,” 26.09.2012, 2012.

Similar Articles

You may also start an advanced similarity search for this article.