Design and implementation of a portable modular platform for the teaching of microcontrollers.
Main Article Content
Abstract
The research focuses on the design and construction of a modular teaching platform for microcontroller and embedded systems laboratories at a university. The platform consists of 20 modules with silkscreen printed components, communication ports and power supply. It communicates with the PC through a USB port, processing the information of the entire modular platform. The design and components used were selected in response to the real needs of teachers and students, gathered through surveys. In addition, the platform allows the integration of these subjects in the simulation of technological processes and the intelligent control of a house. The results show that the modular platform has improved the teaching-learning process, applying theoretical concepts in real environments. It works with Arduino IDE software and free hardware. Its design is ergonomic and didactic for each prototype station of each circuit. Its dimensions are 555 mm long by 355 mm wide, which facilitates its mobilization. The power supply of the boards is included and is indicated with a voltage of 5 V and 3.3 V. It is optimal in practice development time, circuit design and reduction of unnecessary expenses for students. The effectiveness of the project was evaluated through performance evaluations, satisfaction surveys and development of laboratory guides in areas such as automation, control and power.
Downloads
Article Details
Section
Authors retain the copyright of their works and grant the journal IDEAS the right of first publication. Articles are published under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which allows reading, downloading, copying, distributing, and sharing the content for non-commercial purposes, provided that proper credit is given to the author(s) and the original publication in the journal, without making modifications or creating derivative works. The journal IDEAS does not charge fees for submission, processing, or publication of manuscripts and guarantees open access to its contents.
How to Cite
References
IPC, «IPC-A-610D SP Aceptabilidad de Ensambles Electrónicos,», 2017.
Chia, K. S. (2022). An Integration of Open-Source Resources in Distance Teaching for Real-Time Embedded System Using Arduino Microcontroller and Freertos. In-ternational Journal of Integrated Engineering, 14(6), 194-205. DOI: https://doi.org/10.30880/ijie.2022.14.06.017
F. Bertamini, K. Bordón y L. Roca, «Desafíos del comercio electrónico en los PMDER y posibles acciones a seguir,» 1 Junio 2021. [En línea]. Available: http://www2.aladi.org/biblioteca/Publicaciones/ALADI/Secretaria_General/SEC_di/2900/2962.pdf.
Pereira, R., de Souza, C., Patino, D., & Lata, J. (2022). Platform for Distance Learning of Microcontrollers and Internet of Things. Ingenius, (28), 53-62. DOI: https://doi.org/10.17163/ings.n28.2022.05
J. P. Vásquez Lomas, «PLACA ENTRENADORA DE MICROCONTROLADORES, PARA LABORATORIOS DE SISTEMAS EMBEBIDOS EN LA UNIVERSIDAD TÉCNICA DEL NORTE,» 2022.
Arduino, «Esquemático Arduino (TM) UNO Rev3,» 2020. [En línea]. Available: https://content.arduino.cc/assets/UNO-TH_Rev3e_sch.pdf. [Último acceso: 1 feb 2020].
UTN, «Portafolio Estudiantil-Silabo-Microprocesadores y Sistemas Embebidos,» 2021. [En línea]. Available: https://cloud2.utn.edu.ec/ords/f?p=109:5:14828389905593:::::.
Nayak, A., Hiremath, N., Garagad, V., & Chickerur, S. (2022, March). Teaching Microcontrollers-using Arduino as a Platform. In 2022 IEEE Global Engineering Education Conference (EDUCON) (pp. 941-945). IEEE. DOI: https://doi.org/10.1109/EDUCON52537.2022.9766727
Betancur Chicué, V., & García-Valcárcel Muñoz-Repiso, A. M., «Características del Diseño de Estrategias de microaprendizaje en escenarios educativos: revisión sistemática.,» RIED. Revista iberoamericana de educación a distancia., 2023. DOI: https://doi.org/10.5944/ried.26.1.34056
IPC, «IPC-A-610D SP Aceptabilidad de Ensambles Electrónicos,», 2017.
Quinapaxi Cabrera, E. M., «Caracterización dieléctrica y de conductividad de un subs-trato FR4 utilizando resonadores circulares en tecnología microstrip para la Banda L.,» (Bache-lor's thesis, Quito: EPN, 2022.), 2022.
Apriani, N. K., Doyan, A., Sridana, N., & Susilawati, S., « The validity of Physical Learning Device Based on Discovery Learning Model Assisted by Virtual Labora-tory,» 2020. [En línea]. Available: https://scite.ai/reports/10.29303/jppipa.v6i2.413. DOI: https://doi.org/10.29303/jppipa.v6i2.413
Sulawanti, E. V., Ramdani, A., & Artayasa, P., «The Validity of Blended Learning-Based Laboratory Inquiry Learning Tools,» 2021. [En línea]. Available: https://scite.ai/reports/10.33394/j-ps.v9i1.3965. DOI: https://doi.org/10.33394/j-ps.v9i1.3965
Tuček, D., Koprda, Š., Magdin, M., Balogh, Z., & Reichel, J. (2020, No-vember). Usage of the Arduino and other embedded systems in second-ary vocational education in Slovakia. In 2020 18th International Con-ference on Emerging eLearning Technologies and Applications (ICETA) (pp. 712-717). IEEE. DOI: https://doi.org/10.1109/ICETA51985.2020.9379161