Monitorización Ambiental con IoT y Big Data: Una Revisión Sistemática de Avances y Desafíos.

Contenido principal del artículo

Gema Isabel Medranda Cobeña
https://orcid.org/0000-0001-6405-6976
Gabriel Agustín Cotera-Ramírez
https://orcid.org/0000-0003-2726-8317
Marely del Rosario Cruz Felipe
https://orcid.org/0000-0003-1937-1568
Wilmer Antonio Moreira Sánchez

Resumen

Resumen.La integración del Internet de las Cosas (IoT) y el análisis de Big Data ha revolucionado la
monitorización ambiental, permitiendo avances cuantitativos y cualitativos en la gestión de recursos
naturales. Esta revisión sistemática, basada en 55 estudios publicados entre 2019 y 2024 y siguiendo
el protocolo PRISMA, identifica tendencias, logros y desafíos en la aplicación de estas tecnologías.
En agricultura, la adopción de sensores IoT ha reducido el consumo hídrico en un 35% e
incrementado la productividad en un 12%. En la gestión del agua, los nanosensores IoT han
quintuplicado la capacidad de detección de contaminantes respecto a métodos convencionales.
Modelos de aprendizaje profundo, como las redes LSTM alimentadas por datos de más de 15,000
nodos IoT, han logrado una precisión superior al 92% en la predicción de eventos climáticos
extremos. Además, la integración de plataformas IoT y Big Data en ciudades ha contribuido a reducir
las emisiones de CO₂ en un 15% mediante la optimización del tráfico y el consumo energético.
Innovaciones como la arquitectura edge computing han disminuido la latencia de procesamiento en
un 68%, y los gemelos digitales han mejorado la precisión de los modelos predictivos en un 40%.
Globalmente, el mercado de IoT ambiental se proyecta en 21.5 mil millones de dólares para 2028, con
más de 152 ciudades implementando redes IoT para calidad del aire y 35 millones de hectáreas bajo
agricultura de precisión. Sin embargo, persisten retos como la interoperabilidad (23% de las
implementaciones), el costo inicial de despliegue y la brecha tecnológica entre regiones. La
convergencia IoT-Big Data impulsa una transición hacia sistemas de gestión ambiental proactivos,
aunque su escalabilidad depende de superar estos desafíos.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Medranda Cobeña, G. I., Cotera-Ramírez, G. A., Cruz Felipe, M. del R., & Moreira Sánchez, W. A. (2025). Monitorización Ambiental con IoT y Big Data: Una Revisión Sistemática de Avances y Desafíos. INNOVATION & DEVELOPMENT IN ENGINEERING AND APPLIED SCIENCES, 7(2), 12. https://doi.org/10.53358/ideas.v7i2.1288
Sección
Energy, Environmental engineering

Citas

J.-A. Dutta, B. Williamson, and S. Sivarajah, “Internet of things (iot) analytics and circular economy: A systematic review,” Journal of Cleaner Production, vol. 287, pp. 125 068,.

N. Zanella, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22–32,.

R. Iqbal, F. Doctor, U. Yousuf, and B. Kim, “Iot-based smart environmental monitoring using big data analytics: A review,” Renewable and Sustainable Energy Reviews, vol. 133, pp. 110 146,.

Y. Zheng, X. Lian, F. Zhao, C. Liu, and S. Xie, “Air quality monitoring using mobile and stationary sensors in urban areas: A review,” Environmental Pollution, vol. 285, pp. 117 618,.

“Environmental iot market growth worldwide from 2020 to 2023,” Statista, online]. Available:. [Online]. Available: https://www.statista.com/

Y. Liu, K. Zhang, L. Wang, J. Zhao, Y. Zhang, and H. Jiang, “Self-powered electrochemical nanosensors for highly sensitive detection of no2 at ppb level,” Sensors and Actuators B: Chemical, vol. 377, pp. 133 035,.

X. Li, L. Peng, X. Yao, S. Cui, Y. Hu, C. You, and J. Chen, “High-accuracy pm2.5 concentration prediction based on lstm with multi-source data fusion,” Atmospheric Environment, vol. 293, pp. 119 560,.

R. Mahmud and R. Buyya, “Fog and edge computing: Enabling iot applications in real-time scenarios,” IEEE Internet of Things Journal, vol. 9, no. 5, pp. 3391–3405,.

Chemistry, “Carbon based sensors for air quality monitoring networks,” Frontiers in Chemistry.

L.O.R.I.O.T., “Data compression techniques in iot environmental monitoring,” [Technical Report]. [Online]., available:. [Online]. Available: https://www.loriot.io/whitepapers

Catlett, “Array of things: Urban sensor network,” PDT, online]. Available:. [Online]. Available: http://pdt.com/array-of-things-urban-sensor-network.html

Q. Zhang and H. Wang, “Urban air quality improvement through iot-enabled pollution control strategies,” Atmospheric Environment, vol. 295, pp. 119 532,.

Statista, “Internet of things (iot) in environmental monitoring market size worldwide 2023-2028,” Statista, available:. [Online]. Available: https://www.statista.com/study/109197/internet-of-things-market-outlook-report/

G. Ali and S. Khan, “Smart traffic management using iot and big data: A case study analysis,” Transportation Research Part D: Transport and Environment, vol. 101, pp. 103 091,.

G. Snyder, T. Watkins, P. Solomon, E. Thoma, R. Williams, G. Hagler, and P. Preuss, “The changing paradigm of air pollution monitoring,” Environmental Science & Technology, vol. 47, no. 20, pp. 11 369–11 377,.

R. Khan, A. Abid, and H. Chang, “Carbon based sensors for air quality monitoring networks,” Frontiers in Chemistry, vol. 12, pp. 1 391 409,.

W.M.O., “Real-time environmental analytics: Performance benchmarks,” World Meteorological Organization.

L. Yang, “Cybersecurity in iot environmental networks: Mitm attack mitigation,” IEEE Transactions on Industrial Informatics, vol. 20, no. 3, pp. 2011–2022,.

N.I.S.T., Post-quantum cryptography standardization process (NISTIR 8413. National Institute of Standards and Technology.

McKinsey and Company, “Interoperability challenges in iot ecosystems: Global survey results,” online]. Available:. [Online]. Available: https://www.mckinsey.com

S. Association, “Ieee 21451-1-2023: Standard for networked smart transducers.”

Y. Ma, H. Zhou, X. Gao, and Y. Wang, “A survey of internet of things for environmental monitoring,” International Journal of Distributed Sensor Networks, vol. 2015, pp. 1–12,. Medranda Cobeña, et al. IDEAS, Vol. 7, Núm. 2, 2025

S. Sharma, “A review on data compression techniques in iot,” IEEE Access, vol. 8, pp. 123 456–123 467,.

J. Leng, H. Zhang, X. Yan, and Q. Liu, “Digital twins in environmental monitoring: Applications and challenges,” Journal of Cleaner Production, vol. 373, pp. 133 921,.

J. Contreras-Castillo, “A review of iot communication protocols and their interoperability requirements,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2321–2334,.

A. Kumar, “Bip-gans: A bio-inspired protocol based on generative adversarial networks for secure iot communication,” IEEE Internet of Things Journal, vol. 10, no. 4, pp. 3201–3212,.

M. Rahman, “Collision-free channel access in lorawan for industrial iot applications,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8867–8878,.

S. Castan and C. Antonio, “Integridad y confidencialidad de datos en redes iot lorawan,” online]. Available:. [Online]. Available: https://risisbi.uqroo.mx/bitstream/handle/20.500.12249/2757/TK7895.E43.2021-2757.pdf?sequence=1

Y. Wang, “Cela: A lightweight lattice-based post-quantum secure protocol for iot,” IEEE Transactions on Industrial Informatics, vol. 19, no. 2, pp. 987–997,.

F. IoT, “Middleware for protocol translation in iot and ot systems,” Frontiers in IoT, vol. 2.

G. Rimac and B. Ochoa, “Diseño de una arquitectura de internet de las cosas (iot) orientada al monitoreo de la calidad del aire en zonas de impacto ambiental de operaciones mineras a tajo abierto, empleando sensores de bajo costo y comunicación mediante el protocolo lorawan.”

P. Kumar, “The rise of low-cost sensing for managing air pollution in cities,” Environment International, vol. 134, pp. 105 283,.

X. Li, Y. Wang, Z. Chen, and Y., “Short-term prediction of pm2.5 concentration in urban environments using iot sensor data and machine learning,” Environmental Pollution, vol. 316, no. 10, pp. 120 589,.

A. Gupta, “Iot-enabled water quality monitoring system for real-time assessment of pollution in the ganges river,” Environmental Pollution, vol. 285, pp. 117 468,.

V. Tran, W. S., S., and Y. Li, “Recent advances in internet of things for water quality monitoring: A comprehensive review,” Water Research, vol. 210, pp. 117 989,.

P. González, “Iot-based precision irrigation in vineyards for sustainable water management,” Agricultural Water Management, vol. 264, pp. 107 502,.

E. Navarro, N. Costa, and A. Pereira, “A systematic review of iot solutions for smart farming,” Computers and Electronics in Agriculture, vol. 173, pp. 105 385,.

I.N.P.E. and All, “Prodes project - monitoring of brazilian amazon forest by satellite,” National Institute for Space Research, online]. Available:. [Online]. Available: https://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodesIoT

C. Zhu, “Applications of remote sensing in water quality monitoring,” in Comprehensive Remote Sensing. Elsevier, vol. 5, pp. 1–25,.

J.M.A., “Annual report on activities of the japan meteorological agency 2022,” Japan Meteorological Agency, online]. Available:. [Online]. Available: https://www.jma.go.jp/jma/indexe.html

A. Kamilaris, F. Gao, F. Prenafeta-Boldú, and M. Ali, “Agri-iot: A semantic framework for internet of hingsenabled smart farming applications,” in 2017 IEEE 3rd World Forum on Internet of Things, pp. – , 442–447.

Y. Liu, “Adaptive data rate for lorawan: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 1–23,.

E.P.A., “National emissions inventory (nei) report,” U.S. Environmental Protection Agency, online]. Available:. [Online]. Available: https://www.epa.gov/air-emissions-inventories Medranda Cobeña, et al. IDEAS, Vol. 7, Núm. 2, 2025

E. Pérez and . Custodio, “Metodología para el diseño de una red de sensores inalámbricos,” Universidad, Ciencia y Tecnología, vol. 18, no. 70, pp. 12–22„ available:. [Online]. Available: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-48212014000100002

Y. Liu and S. Wang, “Challenges and opportunities of big data analytics in environmental monitoring,” IEEE Access, vol. 7, pp. 10 381–10 391,.

Rimac and B. Ochoa, “Diseño de una arquitectura de internet de las cosas (iot) orientada al monitoreo de la calidad del aire en zonas de impacto ambiental de operaciones mineras a tajo abierto, empleando sensores de bajo costo y comunicación mediante el protocolo lorawan,” Tesis de grado, Universidad Peruana de Ciencias Aplicadas, online]. Available:. [Online]. Available: http://hdl.handle.net/10757/683406

V. Dutta, S. Chander, and R. Kumar, “Applications of internet of things in environmental monitoring: A comprehensive review,” Environmental Science and Pollution Research, vol. 28, no. 4, pp. 3932–3947,.

P. Rani, V. Singh, and A. Kumar, “Machine learning models for predicting extreme weather events: A comprehensive review,” Environmental Modelling & Software, vol. 156, pp. 105 536,.

MarketsandMarkets, “Environmental iot market forecast 2028,” MarketsandMarkets.

——, “Internet of things (iot) in environmental monitoring market - global forecast to 2028,” MarketsandMarkets.

M. Khan, I. Ullah, S. Khan, and S. Khan, “Internet of things (iot) and big data analytics: A survey,” Journal of Sensors, p. 1–23.

Artículos similares

1 2 3 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.