Risk factors associated with burnout syndrome in teachers in the province of Carchi.

Main Article Content

Juan Velasco-Benavides
Erick P. Herrera Granda

Abstract

Summary. Burnout syndrome is widely known as a work-related problem that afflicts teachers worldwide. This problem related to risk factors that generate stress arises due to the work environment and various situations related to dealing with people who demand a high level of dedication and involvement. The present study focused on identifying risk factors associated with burnout syndrome in teachers in the province of Carchi. The main objective was to validate the adaptation of the Maslach Burnout Inventory (MBI) to the specific educational context, and to propose a model of analysis of results based on artificial intelligence. When validating the instrument, it was identified that it was not completely adapted to the local context, so the instrument was modified, having to remove 5 questions that were identified as not relevant by the Confirmatory Factor Analysis, and demographic information of the participants considered of interest to the participating institutions was incorporated. Thus, for the extraction of results from the test, a new results processing model was designed based on multivariate techniques, contemplating 37 input variables. For this, multiple alternatives were considered, including binary classifiers, shallow neural networks and five deep learning models, finding that deep learning, especially a five-layer model developed with TensorFlow and Keras, offered the most accurate predictions of emotional exhaustion, a key dimension of burnout syndrome. This model achieved an accuracy of 86% and an MSE of 0.1193604, demonstrating its reliability for automatic detection of the syndrome without the need for professional diagnosis. The research validates the adaptation of the instrument to the target context and highlights the importance of establishing new models of analysis when using instruments modified from the MBI, ensuring their relevance and applicability in specific contexts.

Downloads

Download data is not yet available.

Article Details

Section

Information and Electronic Engineering

How to Cite

Risk factors associated with burnout syndrome in teachers in the province of Carchi. (2025). INNOVATION & DEVELOPMENT IN ENGINEERING AND APPLIED SCIENCES, 7(1), 20. https://doi.org/10.53358/ideas.v7i1.1015

References

C. Lauracio and T. Lauracio, “Síndrome de Burnout y desempeño laboral en el personal de salud,” Revista Innova Educación, vol. 2, no. 4, pp. 543–554, Oct. 2020, doi: 10.35622/j.rie.2020.04.003. DOI: https://doi.org/10.35622/j.rie.2020.04.003

D. Abril, G. Cabrera, M. Cajamarca, and E. Gutiérrez, “Sistema informático para gestionar información del Síndrome de Burnout en enfermería durante la COVID-19,” vol. 15, 2022, [Online]. Available: http://publicaciones.uci.cu

K. Bolaños, “Medición del estrés laboral en los docentes de la Unidad Educativa José Julián Andrade Carchi Ecuador 2020,” 2021.

M. P. Egea-Romero and M. I. Galindo-Abradelo, “Factores de riesgo para padecer burnout en docentes universitarios: un estudio cualitativo,” VISUAL REVIEW. International Visual Culture Review / Revista Internacional de Cultura Visual, vol. 9, no. Monográfico, pp. 1–11, 2022, doi: 10.37467/revvisual.v9.3635. DOI: https://doi.org/10.37467/revvisual.v9.3635

Á. Rivera Guerrero, P. Segarra Jaime, and G. Giler Valverde, “Síndrome de Burnout en docentes de instituciones de educación superior,” Archivos Venezolanos de Farmacología y Terapéutica, vol. 38, no. 2, pp. 17–23, 2018.

C. Pinel-Martínez, M. D. C. Pérez-Fuentes, and J. J. Carrión-Martínez, “Researching burnout in spanish teachers: A review of the associated factors and assessment instruments,” Bordon, Revista de Pedagogia, vol. 71, no. 1, pp. 115–131, 2019, doi: 10.13042/Bordon.2019.62122. DOI: https://doi.org/10.13042/Bordon.2019.62122

J. Esteras, P. Chorot, and B. Sandín, “Predicción del burnout en los docentes: Papel de los factores organizacionales, personales y sociodemográficos,” Revista de Psicopatologia y Psicologia Clinica, vol. 19, no. 2, pp. 79–92, 2014, doi: 10.5944/rppc.vol.19.num.2.2014.13059. DOI: https://doi.org/10.5944/rppc.vol.19.num.2.2014.13059

B. W. Seok, K. hoan Wee, J. young Park, D. Anil Kumar, and N. S. Reddy, “Modeling the teacher job satisfaction by artificial neural networks,” Soft comput, vol. 25, no. 17, pp. 11803–11815, 2021, doi: 10.1007/s00500-021-05958-0. DOI: https://doi.org/10.1007/s00500-021-05958-0

I. Özdemir and D. Polat, “International Journal of Educational Studies Available Online at ESci Journals AWARENESS AND RELATIONSHIP MANAGEMENT ) AND LEADERSHIP,” International Journal of Educational Studies, vol. 04, no. 02, pp. 37–47, 2017, [Online]. Available: https://esciencepress.net/journals/index.php/IJES/article/view/1935/1126

A. E. Jácome Ortega, J. A. Caraguay Procel, E. P. Herrera-Granda, and I. D. Herrera Granda, “Confirmatory Factorial Analysis Applied on Teacher Evaluation Processes in Higher Education Institutions of Ecuador,” 2020, pp. 157–170. doi: 10.1007/978-3-030-37221-7_14.

H. Ghorbani, “MAHALANOBIS DISTANCE AND ITS APPLICATION FOR DETECTING MULTIVARIATE OUTLIERS,” Facta Universitatis, Series: Mathematics and Informatics, p. 588, Oct. 2019, doi: 10.22190/FUMI1903583G. DOI: https://doi.org/10.22190/FUMI1903583G

E. P. Herrera-Granda, L. L. Lorente-Leyva, J. Yambay, J. Aranguren, M. Ibarra, and J. Peña, “Controller Modeling of a Quadrotor,” Ingénierie des systèmes d information, vol. 27, no. 1, pp. 21–28, Feb. 2022, doi: 10.18280/isi.270103. DOI: https://doi.org/10.18280/isi.270103

M. Martínez Ávila, “Análisis factorial confirmatorio: un modelo de gestión del conocimiento en la universidad pública,” RIDE Revista Iberoamericana para la Investigación y el Desarrollo Educativo, vol. 12, no. 23, Dec. 2021, doi: 10.23913/ride.v12i23.1103. DOI: https://doi.org/10.23913/ride.v12i23.1103

W. Sandoval, “Análisis de Componentes Principales,” rstudio-pubs.

C. C. Aggarwal, Neural Networks and Deep Learning. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-94463-0. DOI: https://doi.org/10.1007/978-3-319-94463-0

S. S. Alquegui, “Design and implementation of an indoor positioning system based on wireless embedded devices and Machine Learning,” 2022. Accessed: May 28, 2023. [Online]. Available: https://repositorio.unican.es/xmlui/bitstream/handle/10902/25230/441668.pdf?sequence=1

S. Weidman, Deep learning from scratch, First. O’Reilly, 2019.

L. L. Lorente-Leyva, J. F. Pavón-Valencia, Y. Montero-Santos, I. D. Herrera-Granda, E. P. Herrera-Granda, and D. H. Peluffo-Ordóñez, “Artificial Neural Networks for Urban Water Demand Forecasting: A Case Study,” J Phys Conf Ser, vol. 1284, no. 1, p. 12004, 2019, doi: 10.1088/1742-6596/1284/1/012004. DOI: https://doi.org/10.1088/1742-6596/1284/1/012004

L. Deng, M. Yang, H. Li, M. R. Lyu, and I. King, “Enhancing the reliability of out-of-distribution image detection in neural networks. ,” Mar. 2021.

A. Kaur and R. Saluja, “Handling Class Imbalance Problem Using Oversampling Techniques: A Review. In Advances in Computing and Data Sciences ,” Springer, Singapore, pp. 9–19, 2020.

Z. Zhang, S. Zohren, and S. Roberts, “DeepLOB: Deep Convolutional Neural Networks for Limit Order Books,” vol. 6, Aug. 2020, doi: 10.1109/TSP.2019.2907260. DOI: https://doi.org/10.1109/TSP.2019.2907260

C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J Big Data, vol. 6, no. 1, pp. 1–48, Dec. 2019, doi: 10.1186/s40537-019-0197-0. DOI: https://doi.org/10.1186/s40537-019-0197-0

S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach,” in Procedia Computer Science, Elsevier B.V., 2018, pp. 679–688. doi: 10.1016/j.procs.2018.05.069. DOI: https://doi.org/10.1016/j.procs.2018.05.069

A. E. Jácome Ortega, J. A. Caraguay Procel, E. P. Herrera-Granda, and I. D. Herrera Granda, “Confirmatory Factorial Analysis Applied on Teacher Evaluation Processes in Higher Education Institutions of Ecuador,” in Advances in Intelligent Systems and Computing, Springer, 2020, pp. 157–170. doi: 10.1007/978-3-030-37221-7_14. DOI: https://doi.org/10.1007/978-3-030-37221-7_14

E. P. Herrera-Granda, I. D. Herrera-Granda, L. L. Lorente-Leyva, P. D. Granda-Gudiño, and J. A. Caraguay-Procel, “Implementation of an Artificial Vision System and Monitoring of Human Objectives using a Quadricopter,” Revista Ibérica de Sistemas e Tecnologias de Informação, vol. 2019, no. E19, pp. 198–211, 2019, [Online]. Available: https://www.proquest.com/openview/ca355d43bc1ac0d236ca8da769393332/1?pq-origsite=gscholar&cbl=1006393

E. P. Herrera-Granda, J. C. Torres-Cantero, A. Rosales, and D. H. Peluffo-Ordóñez, “A Comparison of Monocular Visual SLAM and Visual Odometry Methods Applied to 3D Reconstruction,” Applied Sciences, vol. 13, no. 15, p. 8837, Jul. 2023, doi: 10.3390/app13158837. DOI: https://doi.org/10.3390/app13158837

E. P. Herrera-Granda, A. L. Díaz-Chimbo, P. Granda-Gudiño, M. R. Pusdá-Chulde, and I. D. García-Santillán, “Prototype of an Android mobile application for real time drowsiness detection and alertness applied in night driving,” Revista Ibérica de Sistemas e Tecnologias de Informação, vol. 2020, no. E32, pp. 98–112, 2020, [Online]. Available: https://www.proquest.com/openview/63deba1836c13b0fe0b01069ba7cda50/1?pq-origsite=gscholar&cbl=1006393

M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús, Neural Network Design 2nd Edition, 2nd ed. 2014.

E. M. Quindemil Torrijo and F. Rumbaut León, “Análisis de componentes principales para obtener indicadores reducidos de medición en la búsqueda de información,” 2019. [Online]. Available: https://orcid.org/0000-0003-3705-6297

M. I. C. Rachmatullah, J. Santoso, and K. Surendro, “Determining the number of hidden layer and hidden neuron of neural network for wind speed prediction,” PeerJ Comput Sci, vol. 7, pp. 1–19, 2021, doi: 10.7717/PEERJ-CS.724. DOI: https://doi.org/10.7717/peerj-cs.724

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)