Analysis of Resistance to Bactericera cockerelli in Potato Germplasm: A Sustainable Approach
Main Article Content
Abstract
Bactericera cockerelli (Sulc) is the main vector of plant phloem-associated pathogens responsible for the potato purple top complex, a disease that can cause losses of up to 100% in potato crops. Chemical control methods, mainly based on insecticides, have proven to be inefficient due to the development of insect resistance. This problem highlights the need to implement sustainable strategies to mitigate its impact. One promising strategy is the genetic resistance of plants, specifically antibiosis, this type of resistance implies that plants negatively affect the insect's biology. In this context, the present study aimed to identify potato genotypes conserved by the National Roots and Tubers Program of the National Institute of Agricultural Research with antibiosis resistance characteristics against B. cockerelli, by means of a statistical analysis based on a complete factorial design. The evaluation considered the number of eggs oviposited on different days of evaluation in 9 wild species, 18 improved varieties, 15 native varieties and 18 promising clones. Genotypes with a marked resistance due to antibiosis were identified. These materials can contribute valuable genetic resources for breeding programs and the implementation of integrated crop management strategies, thus reducing dependence on pesticides that endanger human health and biodiversity.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain the copyright of their works and grant the journal IDEAS the right of first publication. Articles are published under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which allows reading, downloading, copying, distributing, and sharing the content for non-commercial purposes, provided that proper credit is given to the author(s) and the original publication in the journal, without making modifications or creating derivative works. The journal IDEAS does not charge fees for submission, processing, or publication of manuscripts and guarantees open access to its contents.
How to Cite
References
S. Zhang, “Melatonin attenuates potato late blight by disrupting cell growth, stress tolerance, fungicide susceptibility and homeostasis of gene expression in phytophthora infestans»,” Front. Plant Sci, no. vember, pp.1–19,.
I. Samaniego, “Analysis of environmental conditions effect in the phytochemical composition of potato (solanum tuberosum) cultivars»,” Plants, vol. 9, n.o 7, pp. 1–13,.
E.S.P.A.C., “Espac»,” en línea]. Disponible en:. [Online]. Available: https://www.ecuadorencifras.gob.ec/estadisticas-agropecuarias-2/
D. Duque and D. Fierro, “Hábitos de consumo de la papa en los hogares de la ciudad de quito»,” Cienc. ergo-sum, vol. 32.
H. Andrade and J. Ortega, “Estado de arte del cultivo de papa para el consumo de papa prefrita congelada (ppfc) en el ecuador.»,” Rev. Latinoam. la Papa, vol. 25, n.o 2, pp. 42–57,.
K. Dahal, X. Li, H. Tai, A. Creelman, and B. Bizimungu, “Improving potato stress tolerance and tuber yield under a climate change scenario – a current overview»,” Front. Plant Sci, vol. 10, n.o May.
T. Mohanta, T. Bashir, A. Hashem, and E. Allah, “Systems biology approach in plant abiotic stresses»,” Plant Physiol. Biochem, vol. 121, n.o July, pp. 58–73,.
C. Carrillo, Z. Fu, and D. Burckhardt, “First record of the tomato potato psyllid bactericera cockerelli from south america»,” Bull. Insectology, vol. 72, n.o 1, pp. 85–91,.
J. Berdúo, J. Ruiz, L. Méndez, L. Mejía, D. Maxwell, and A. Sanchéz-Pérez, “Detección de patógenos asociados a la enfermedad punta morada en los cultivos de pape y tomate en guatemala»,” Ciencia, Tecnol. y Salud, vol. 7, n.o 2, pp. 205–217,.
A. Hansen, J. Trumble, R. Stouthamer, and T. Paine, “A new huanglongbing species, “candidatus liberibacter psyllaurous,” found to infect tomato and potato, is vectored by the psyllid bactericera cockerelli (sulc)»,” Appl. Environ. Microbiol, vol. 74, n.o 18, pp. 5862–5865,.
G. Giaccaglia, C. Carrillo, F. Pacini, and A. Bertaccini, “Phloem limited bacteria in potato with purple top disease and in bactericera cockerelli in ecuador»,” Phytopathogenic Mollicutes, vol. 14, n.o 1, pp. 31–42,.
S. Mishra and M. Ghanim, “Interactions of liberibacter species with their psyllid vectors: Molecular, biological and behavioural mechanisms»,” Int. J. Mol. Sci, vol. 23, n.o 7.
J. Vereijssen, “Bactericera cockerelli (tomato/potato psyllid),” CABI Compendium, 2022, iD: cabicompendium. 45643. [Online]. Available: https://www.cabicompendium.org/45643
F. Workneh, J. Trees, L. Paetzold, I. Badillo-vargas, and C. Rush, “Impact of ‘ candidatus liberibacter solanacearum’ haplotypes on sprout emergence and growth from infected seed tubers»,” Crop Prot, vol. n.o October, pp. 105 462,.
I. Navarrete, C. Almekinders, J. Andrade-Piedra, and P. Struik, “Efforts of researchers and other stakeholders to manage an unfolding epidemic: Lessons from potato purple top in ecuador»,” NJAS Impact Agric. Life Sci, vol. 95, n.o 1.
J. T. Stillson, E. H. Bloom, and Z. Llán, “A novel plant pathogen management tool for vector management»,” Pest Manag. Sci, vol. 76, n.o 11, pp. 0–2,. [Online]. Available: https://doi.org/10.1002/ps.5922.
A. Roque, M. Beltrán, Y. Ochoa, and J. Delgado, “Parámetros poblacionales de bactericera cockerelli en plantas de tomate tratadas con menadiona»,” Rev. Mex. Ciencias Agrícolas, vol. 15, n.o 4, pp. 3349,.
A. Szczepaniec, K. Varela, M. Kiani, L. Paetzold, and C. Rush, “Incidence of resistance to neonicotinoid insecticides in bactericera cockerelli across southwest u.s.»,” Crop Prot, no. vember, pp. 188–195,.
M. Kiani, Z. Fu, and A. Szczepaniec, “ddrad sequencing identifies pesticide resistance-related loci and reveals new insights into genetic structure of bactericera cockerelli as a plant pathogen vector»,” Insects, vol. 13, n.o 3.
M. Cuesta and R. J. X., “Mejoramiento genÉtico de papa : Conceptos , procedimientos , metodologías y protocolos.”
D. Fravel, “Role of antibiosis in the biocontrol of plant diseases*»,” Annu. Rev. Phytopathol, vol. 26, n.o 1, pp. 75–91,.
H. Cortez, “Resistencia a insectos de tomate injertado en parientes silvestres, con énfasis en bactericera cockerelli sulc,” Bioagro, vol. 22, n.o 1, pp. 11–16,. [Online]. Available: (hemiptera:
E. Cerna, Y. Ochoa, L. Aguirre, M. Flores, and J. Landeros, “Determination of insecticide resistance in four populations of potato psillid bactericera cockerelli (sulc.) (hemiptera: Triozidae)»,” Phyton-International J. Exp.Bot, vol. 82, n.o 1923, pp. 63–68,.
J. Levy and C. Tamborindeguy, “Solanum habrochaites, a potential source of resistance against bactericera cockerelli (hemiptera: Triozidae) and “candidatus liberibacter solanacearum”»,” J. Econ. Entomol, vol. 107, n.o 3, pp. 1187–1193,.
L. Ilzarbe, M. Tanco, E. Viles, and M. J. Alvarez Sanchez Arjona, “Ei diseño de experimentos como herramienta para la mejora de los procesos. aplicación de la metodología al caso de una catapulta: Design to experiments as a tool for process improvement,” Methodology Applied to a Catapult», Tecnura, vol. 10, pp. 127–138,.
S. Arnold, “Design of experiments with minitab.”
J. Box, H. G., W., and Hunter, “Statistics for experimenters».”
J. Hsu, Multiple Comparisons, vol. 7, n.o 2.
L. B, “La esperanza del cuadrado medio»,” Rev. Colomb. Ciencias Pecu, vol. 20, n.o 2, pp. 193–201,.
R. Fonseka, H. Fonseka, and K. Abhyapala, “Crop wild relatives: An underutilized genetic resource for improving agricultural productivity and food security»,” Agric. Res. Sustain. Food Syst. Sri Lanka, vol. 2, pp. 11–38,.
A. Ficiciyan, J. Loos, S. Sievers-Glotzbach, and T. Tscharntke, “More than yield: Ecosystem services of traditional versus modern crop varieties revisited»,” Sustain, vol. 10, n.o 8, pp. 1–15,.
A. Rashed, “Postharvest development of ‘ candidatus liberibacter solanacearum’ in late-season infected potato tubers under commercial storage conditions»,” Plant Dis, vol. 102, n.o 3, pp. 561–568,.