An Econometric Analysis of Unemployment in Ecuador: Classical Approaches and a Machine Learning-Based Proposal
Main Article Content
Abstract
This study focuses on modeling and predicting unemployment in Ecuador using neural networks, comparing their effectiveness with traditional econometric methods. The dependent variable, unemployment (), defined as the percentage of the working population without employment, is analyzed based on seven macroeconomic predictors: Real gross domestic product (GDP, x₁), inflation (x₂, percentage change in the consumer price index), exports (x₃) and imports (x₄, valued in millions of USD), real minimum wage (x₅), public spending (x₆, percentage of GDP), and interest rate (x₇). Previous research, based on Okun's Law, identified linear correlations between GDP growth and unemployment reduction using Ordinary Least Squares (OLS) and cointegration models. However, these conventional techniques, including multiple regressions, showed limitations in capturing the nonlinear dynamics inherent in unemployment. In contrast, neural networks (NN), especially sequential architectures, demonstrated superiority in modeling complex interactions between variables. The study evaluates deep learning models with one and two hidden layers, identifying an optimal configuration of one hidden layer (16 neurons), achieving a loss of 0.2846, 75% accuracy, and Mean Square Error (MSE) of 0.2064 on unseen test data. The results highlight the ability of neural networks to model unemployment more accurately than linear methods, attributing this to their adaptability to learn nonlinear patterns in multivariate data. This study demonstrates that variables such as GDP, inflation, public spending, and interest rates significantly influence unemployment. Neural networks (NN) effectively capture these complex relationships. Their usefulness in predicting socioeconomic phenomena in developing countries such as Ecuador is highlighted, overcoming the limitations of traditional models.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain the copyright of their works and grant the journal IDEAS the right of first publication. Articles are published under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which allows reading, downloading, copying, distributing, and sharing the content for non-commercial purposes, provided that proper credit is given to the author(s) and the original publication in the journal, without making modifications or creating derivative works. The journal IDEAS does not charge fees for submission, processing, or publication of manuscripts and guarantees open access to its contents.
How to Cite
References
M. B. Castro and K. Beltrán, “Análisis correlación del crecimiento económico y la tasa de desempleo en el ecuador (período 2012-2021),” Ciencia Latina Revista Científica Multidisciplinar, vol. 7, no. 4, pp. 4020–4035, 2023.
A. D. C. Vega-Granda, Y. L. Bermeo-Pineda, and F. Y. Vega-Jaramillo, “Solange del cisne gonzález-toro,” vol. 7, pp. 661–680, 2021.
L. Flores-Cevallos and C. Flores-Tapia, “Análisis econométrico del desempleo y crecimiento económico: aplicación de la ley de okun para la economía ecuatoriana en el período 1990 - 2010,” Ekotemas, vol. 3, no. 2, pp. 97–118, 2017. [Online]. Available: https://www.ekotemas.cu/index.php/ekotemas/article/view/226/146
R. Patiño, L. Molero, J. Ruperti, and V. Fernández, “Efectos del pib sobre el desempleo en mujeres y jóvenes en el ecuador (2007-2019),” Avances en Investigación Científica, vol. 2, pp. 741–754, 2020. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=7958752
A. Campoverde, C. Ortiz, and V. Sánchez, “Relación entre la inflación y el desempleo: una aplicación de la curva de phillips para ecuador, latinoamérica y el mundo,” Revista Vista Económica, vol. 1, no. 1, pp. 22–34, 2016. [Online]. Available: https://revistas.unl.edu.ec/index.php/economica/article/view/200
C. A. Abad-Basantes, J. H. Abad-Basantes, J. C. Ávila Armijos, and L. F. Albuja-Loachamin, “La dinámica de la inflación y el desempleo: Un estudio econométrico basado en la curva de phillips,” Journal of Economic and Social Science Research, vol. 4, no. 2, pp. 1–16, 2024.
K. Mero, N. Salgado, J. Meza, J. Pacheco-Delgado, and S. Ventura, “Unemployment rate prediction using a hybrid model of recurrent neural networks and genetic algorithms,” Applied Sciences (Switzerland), vol. 14, no. 8, 2024.
I. Bonet Cruz, S. Salazar Martínez, A. Rodríguez Abed, G. Ábalo, M. García Lorenzo, and M. Matilde, “Redes neuronales recurrentes para el análisis de secuencias,” IEEE, 2007.
“Datosmacro,” https://datosmacro.expansion.com/, 2024.
R. T. Yela Burgos, J. L. Rivera Velasco, Y. M. Leturne Macías, and S. M. Moreira Macías, “Efecto de la variación de la producción en el desempleo del ecuador basado en la ley de okun,” Espergesia, vol. 11, no. 1, p. e110105, 2024.
G. Avellán-Solines, “Efectos del dólar y petróleo en el desempleo urbano en ecuador,” Economía y Negocios, vol. 9, no. 1, pp. 113–119, 2018.
L. A. Lopez Nuñez, “Facultad de contabilidad y auditoría,” https://repositorio.uta.edu.ec/bitstream/123456789/27090/1/T4158e.pdf, 2021, new England Journal of Medicine, pp. 1–93.
Banco Central del Ecuador (BCE), “Datos económicos,” 2024.
“Variables económicas del ecuador,” https://www.indexmundi.com/g/g.aspx?v=39&c=ec&l=es, 2024, indexmundi.
INEC, “Desempleo en el ecuador,” https://www.ecuadorencifras.gob.ec/estadisticas/, 2024.
M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús, Neural Network Design 2nd Edition, 2nd ed., 2014.
M. I. C. Rachmatullah, J. Santoso, and K. Surendro, “Determining the number of hidden layer and hidden neuron of neural network for wind speed prediction,” PeerJ Comput Sci, vol. 7, pp. 1–19, 2021.
S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual understanding of convolutional neural network- a deep learning approach,” in Procedia Computer Science. Elsevier B.V., 2018, pp. 679–688.
E. P. Herrera-Granda and M. J. Aza-Espinosa, “Assessment of learning achievements in higher education using moodle virtual classrooms and h5p: A case study,” Preprints, feb 2025, licencia: CC BY 4.0.
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, pp. 1735–1780, 1997.
I. Quinteros, Modelos econométricos y estadísticos. Universidad Politécnica Estatal del Carchi-UPEC, 2024.
C. C. Aggarwal, Neural Networks and Deep Learning. Cham: Springer International Publishing, 2018.
S. Weidman, Deep Learning from Scratch, 1st ed. O’Reilly, 2019.
Y. LeCun and Y. Bengio, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, mayo 2015.
R. S. Pindyck and D. L. Rubinfeld, Econometría: Modelos y pronósticos, 4th ed. McGraw-Hill, 2001.
E. M. Quindemil Torrijo and F. Rumbaut León, “Análisis de componentes principales para obtener indicadores reducidos de medición en la búsqueda de información,” 2019. [Online]. Available: https://orcid.org/0000-0003-3705-6297
M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús, Neural Network Design 2nd Edition, 2nd ed., 2014