Detection of Chronic Malnutrition in Children Under Five Years of Age Applying Multivariate Techniques

Main Article Content

Dennys Daquilema
Erick P. Herrera Granda

Abstract

This article shows the design of five classifiers for the detection of chronic malnutrition in children under five years of age, for which a database was processed with five quantitative and 26 qualitative variables that were subjected to a dimension decrease employing a multiple correspondence analysis, subsequently, by using neural networks the first classifier was generated. The following three designs used deep neural network techniques, starting from a principal component analysis that determined an architecture with a hidden layer that houses 96. 3% of the cumulative variance, the difference between these classifiers lies in the technique that determined the number of neurons in the hidden layer. The last designed classifier employs logistic regression as a traditional statistical technique. The study ended with tests performed with the best-performing classifier that allowed for establishing the most influential variables.

Downloads

Download data is not yet available.

Article Details

Section

Information and Electronic Engineering

How to Cite

Detection of Chronic Malnutrition in Children Under Five Years of Age Applying Multivariate Techniques. (2025). INNOVATION & DEVELOPMENT IN ENGINEERING AND APPLIED SCIENCES, 7(1), 25. https://doi.org/10.53358/ideas.v7i1.1072

References

UNICEF, “Informe sobre nutrición infantil 2021 | Resumen ¿UNA ALIMENTACIÓN PARA,” 2022. Accessed: Jul. 29, 2022. [Online]. Available: https://www.unicef.org/media/107236/file/%20Fed%20to%20Fail%20-%20BRIEF-SPANISH-Final.pdf

INEC, “Encuesta Nacional de Salud y Nutrición ENSANUT,” 2018. Accessed: Jul. 29, 2022. [Online]. Available: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_Sociales/ENSANUT/ENSANUT_2018/Principales%20resultados%20ENSANUT_2018.pdf

J. Rivera, U. Andina, S. Bolívar, and S. Olarte, “LA MALNUTRICIÓN INFANTIL EN ESMERALDAS: ¿UN ÉXITO RELATIVO?,” 2022. Accessed: Jul. 29, 2022. [Online]. Available: http://revistasojs.utn.edu.ec/index.php/lauinvestiga/article/view/457/350

UNICEF Ecuador, “Desnutrición en Ecuador.” Accessed: Jul. 29, 2022. [Online]. Available: https://www.unicef.org/ecuador/desnutrici%C3%B3n-cr%C3%B3nica-infantil

A. Fernández, R. Martínez, I. Carrasco, and A. Palma, “Impacto social y económico de la malnutrición,” 2017. Accessed: Jul. 29, 2022. [Online]. Available: https://www.cepal.org/sites/default/files/publication/files/41247/LCTS2017-32_es.pdf

H. Shi et al., “Explainable machine learning model for predicting the occurrence of postoperative malnutrition in children with congenital heart disease,” Clinical Nutrition, vol. 41, no. 1, pp. 202–210, Jan. 2022, doi: 10.1016/j.clnu.2021.11.006. DOI: https://doi.org/10.1016/j.clnu.2021.11.006

M. M. Islam et al., “Application of machine learning based algorithm for prediction of malnutrition among women in Bangladesh,” International Journal of Cognitive Computing in Engineering, vol. 3, pp. 46–57, Jun. 2022, doi: 10.1016/j.ijcce.2022.02.002. DOI: https://doi.org/10.1016/j.ijcce.2022.02.002

P. M. P. K. J. H. C. Ziaullah Momand, Data Mining Prediction of Malnutrition in Afghan Children. IEEE, 2020. Accessed: Mar. 18, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9059388

H. Darsene, A. Geleto, A. Gebeyehu, and S. Meseret, “Magnitude and predictors of undernutrition among children aged six to fifty nine months in Ethiopia: A cross sectional study,” Archives of Public Health, vol. 75, no. 1, Jul. 2017, doi: 10.1186/s13690-017-0198-4. DOI: https://doi.org/10.1186/s13690-017-0198-4

D. Kartika, R. Liana Gema, and M. Pratiwi, “Expert Systems for Identifying Children’s Severe Malnutrition,” 2016.

R. N. Apriyono, A. Triayudi, and I. D. Sholihati, “Web-Based Expert System Detects Malnutrition in Toddlers with the Naïve Bayes Method,” 2020. [Online]. Available: https://iocscience.org/ejournal/index.php/mantik

S. Najaflou and M. Rabiei, “Recommended System for Controlling Malnutrition in Iranian Children 6 to 12 Years Old using Machine Learning Algorithms,” 2021.

S. M. J. Rahman et al., “Investigate the risk factors of stunting, wasting, and underweight among under-five Bangladeshi children and its prediction based on machine learning approach,” PLoS One, vol. 16, no. 6 June 2021, Jun. 2021, doi: 10.1371/journal.pone.0253172. DOI: https://doi.org/10.1371/journal.pone.0253172

A. R. Lakshminarayanan, B. Pavani, V Rajeswari, S. Parthasarathy, A. A. Azeez Khan, and K. Javubar Sathick, “Malnutrition Detection using Convolutional Neural Network,” in Proceedings of 2021 IEEE 7th International Conference on Bio Signals, Images and Instrumentation, ICBSII 2021, Institute of Electrical and Electronics Engineers Inc., Mar. 2021. doi: 10.1109/ICBSII51839.2021.9445188. DOI: https://doi.org/10.1109/ICBSII51839.2021.9445188

Meneses Pozo Daniela and Narváez Delgado Angie, “Estrategias de salud e incidencia en desnutrición crónica infantil en menores de cinco años que acuden del Centro de Salud Nuevo San Rafael- Esmeraldas,” UNIVERSIDAD POLITÉCNICA ESTATAL DEL CARCHI. FACULTAD DE INDUSTRIAS AGROPECUARIAS Y CIENCIAS AMBIENTALES , 2022.

L. Sandoval-Pillajo, M. Pusdá, F. Garrido, and E. P. Herrera-Granda, “Embedded system for mobility of blind people,” Revista Ibérica de Sistemas e Tecnologias de Informação, vol. 2019, no. E19, pp. 328–340, 2019, [Online]. Available: https://www.proquest.com/openview/841aa93ba3c3df454b7fc833a09a1823/1?pq-origsite=gscholar&cbl=1006393

M. María, T. E. Portillo, J. A. Salas, and P. Mendoza, “MAHALANOBIS Y LAS APLICACIONES DE SU DISTANCIA ESTADISTICA.”

E. P. Herrera-Granda, J. C. Torres-Cantero, A. Rosales, and D. H. Peluffo-Ordóñez, “A Comparison of Monocular Visual SLAM and Visual Odometry Methods Applied to 3D Reconstruction,” Applied Sciences, vol. 13, no. 15, 2023, doi: 10.3390/app13158837. DOI: https://doi.org/10.3390/app13158837

H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 4. pp. 433–459, Jul. 2010. doi: 10.1002/wics.101. DOI: https://doi.org/10.1002/wics.101

V. M. Gonzalez Rojas, G. Conde Arango, and A. F. Ochoa Muñoz, “Análisis de Componentes Principales en presencia de datos faltantes: el principio de datos disponibles,” Scientia et Technica, vol. 26, no. 2, pp. 219–228, Jun. 2021, doi: 10.22517/23447214.20591. DOI: https://doi.org/10.22517/23447214.20591

J. Amat Rodrigo, “Análisis de Componentes Principales (Principal Component Analysis, PCA) y t-SNE,” 2017. [Online]. Available: https://github.com/JoaquinAmatRodrigo/Estadistica-con-R

J. B. Greenacre Michael, “Multiple Correspondence Analysis and Related Methods Statistics in the Social and Behavioral Sciences Series,” Londres, 2006. DOI: https://doi.org/10.1201/9781420011319.ch2

J. Enrique and P. Olivares, “Modelo de análisis de correspondencias múltiples,” 1996.

C. Y. J. Peng, K. L. Lee, and G. M. Ingersoll, “An introduction to logistic regression analysis and reporting,” Journal of Educational Research, vol. 96, no. 1, pp. 3–14, 2002, doi: 10.1080/00220670209598786. DOI: https://doi.org/10.1080/00220670209598786

J. Amat Rodrigo, “Regresión logística simple y múltiple,” 2016.

A. Géron, “Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow SECOND EDITION Concepts, Tools, and Techniques to Build Intelligent Systems,” 2019. [Online]. Available: http://oreilly.com

F. Bueno, “Redes Neuronales: Entrenamiento y Comportamiento,” 2019.

A. E. Jácome Ortega, J. A. Caraguay Procel, E. P. Herrera-Granda, and I. D. Herrera Granda, “Confirmatory Factorial Analysis Applied on Teacher Evaluation Processes in Higher Education Institutions of Ecuador,” in Advances in Intelligent Systems and Computing, Springer, 2020, pp. 157–170. doi: 10.1007/978-3-030-37221-7_14. DOI: https://doi.org/10.1007/978-3-030-37221-7_14

K. Yotov, E. Hadzhikolev, and S. Hadzhikoleva, “Determining the Number of Neurons in Artificial Neural Networks for Approximation, Trained with Algorithms Using the Jacobi Matrix,” TEM Journal, vol. 9, no. 4, pp. 1320–1329, Nov. 2020, doi: 10.18421/TEM94-02. DOI: https://doi.org/10.18421/TEM94-02

J. M. Betz, P. N. Brown, and M. C. Roman, “Accuracy, precision, and reliability of chemical measurements in natural products research,” Fitoterapia, vol. 82, no. 1. pp. 44–52, Jan. 2011. doi: 10.1016/j.fitote.2010.09.011. DOI: https://doi.org/10.1016/j.fitote.2010.09.011

Machaca Apaza Lianne, “Estimación de la evapotranspiración de referencia,” 2016. [Online]. Available: http://repositorio.unap.edu.pe/handle/20.500.14082/4612

A. Zapeta Hernández, G. A. Galindo Rosales, H. J. Juan Santiago, and M. Martínez Lee, “Métricas de rendimiento para evaluar el aprendizaje automático en la clasificación de imágenes petroleras utilizando redes neuronales convolucionales,” Ciencia Latina Revista Científica Multidisciplinar, vol. 6, no. 5, pp. 4624–4637, Nov. 2022, doi: 10.37811/cl_rcm.v6i5.3420. DOI: https://doi.org/10.37811/cl_rcm.v6i5.3420

Poloni Pablo, “Nuevo Algoritmo de clasificación supervisado sin parámetros, no afectado por el desbalanceo y overfitting,” 2014. [Online]. Available: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5839_Poloni.pdf

E. P. Herrera-Granda, I. D. Herrera-Granda, L. L. Lorente-Leyva, P. D. Granda-Gudiño, and J. A. Caraguay-Procel, “Implementation of an Artificial Vision System and Monitoring of Human Objectives using a Quadricopter,” Revista Ibérica de Sistemas e Tecnologias de Informação, vol. 2019, no. E19, pp. 198–211, 2019, [Online]. Available: https://www.proquest.com/openview/ca355d43bc1ac0d236ca8da769393332/1?pq-origsite=gscholar&cbl=1006393

I. D. Herrera-Granda, W. G. Imbaquingo-Usiña, L. L. Lorente-Leyva, E. P. Herrera-Granda, D. H. Peluffo-Ordóñez, and D. G. Rossit, “Optimization of the Network of Urban Solid Waste Containers: A Case Study BT - Technology Trends,” M. Botto-Tobar, G. Pizarro, M. Zúñiga-Prieto, M. D’Armas, and M. Zúñiga Sánchez, Eds., Cham: Springer International Publishing, 2019, pp. 578–589. DOI: https://doi.org/10.1007/978-3-030-05532-5_44

I. D. Herrera-Granda et al., “Artificial Neural Networks for Bottled Water Demand Forecasting: A Small Business Case Study,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11507 LNCS, Springer Verlag, 2019, pp. 362–373. doi: 10.1007/978-3-030-20518-8_31. DOI: https://doi.org/10.1007/978-3-030-20518-8_31

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)