Bioactivación del quimioterapéutico ciclofosfamida mediada por citocromos P450 con fines de uso en terapia génica de cáncer
Contenido principal del artículo
Resumen
Esta revisión examina el papel de las enzimas del citocromo P450 en la bioactivación del agente quimioterapéutico ciclofosfamida (CPA) para uso en la terapia génica del cáncer. El estudio explora enzimas específicas del citocromo P450, como CYP2B6, CYP2C9 y CYP3A4, encargadas de metabolizar la CPA en su forma activa, destacando su potencial en la terapia del gen suicida o GDEPT. La revisión también analiza las modificaciones genéticas realizadas para mejorar la eficiencia catalítica de estas enzimas y aborda los desafíos y las direcciones futuras de la integración de GDEPT con otras terapias contra el cáncer para mejorar la especificidad y eficacia del tratamiento.
Descargas
Detalles del artículo
Citas
Cancer.Net, “Breast Cancer,” Cancer.Net, 2022. [Online]. Available: https://www.cancer.net/cancer-types/breast-cancer. [Accessed: 08-Jun-2022]
Statista, “Cancer worldwide - Statistics & Facts,” Statista, 2021. [Online]. Available: https://www.statista.com/topics/8292/cancer-worldwide/. [Accessed: 02-Jun-2022]
American society of clinical oncology, “American society of clinical oncology,” ASCO, 2022. [Online]. Available: https://beta.asco.org/search?q=cancer. [Accessed: 09-Jun-2022]
Brestcancer.org, “About breast cancer,” Brestcancer.org, 2022. [Online]. Available: https://www.breastcancer.org/about-breast-cancer. [Accessed: 08-Jun-2022]
A. Arrospide, M. Soto-Gordoa, T. Acaiturri, G. López-Vivanco, L. C. Abecia, and J. Mar, “[Cost of breast cancer treatment by clinical stage in the Basque Country, Spain].,” Rev. Esp. Salud Publica, vol. 89, no. 1, pp. 93–97, Feb. 2015, doi: 10.4321/S1135-57272015000100010. DOI: https://doi.org/10.4321/S1135-57272015000100010
B. Balkhi et al., “Drug utilization and expenditure of anticancer drugs for breast cancer.,” Saudi Pharm. J., vol. 28, no. 6, pp. 669–674, Jun. 2020, doi: 10.1016/j.jsps.2020.04.007. DOI: https://doi.org/10.1016/j.jsps.2020.04.007
Y. Jounaidi and D. J. Waxman, “Use of replication-conditional adenovirus as a helper system to enhance delivery of P450 prodrug-activation genes for cancer therapy.,” Cancer Res., vol. 64, no. 1, pp. 292–303, Jan. 2004, doi: 10.1158/0008-5472.can-03-1798. DOI: https://doi.org/10.1158/0008-5472.CAN-03-1798
S. K. Libutti, “Recording 25 years of progress in Cancer Gene Therapy.,” Cancer Gene Ther., vol. 26, no. 11–12, pp. 345–346, Nov. 2019, doi: 10.1038/s41417-019-0121-y. DOI: https://doi.org/10.1038/s41417-019-0121-y
B. Cesur-Ergün and D. Demir-Dora, “Gene therapy in cancer.,” J. Gene Med., vol. 25, no. 11, p. e3550, Nov. 2023, doi: 10.1002/jgm.3550. DOI: https://doi.org/10.1002/jgm.3550
D. J. Waxman, L. Chen, J. E. Hecht, and Y. Jounaidi, “Cytochrome P450-based cancer gene therapy: recent advances and future prospects.,” Drug Metab. Rev., vol. 31, no. 2, pp. 503–522, May 1999, doi: 10.1081/dmr-100101933. DOI: https://doi.org/10.1081/DMR-100101933
A. P. Mishra, S. Chandra, R. Tiwari, A. Srivastava, and G. Tiwari, “Therapeutic potential of prodrugs towards targeted drug delivery.,” Open Med. Chem. J., vol. 12, pp. 111–123, Oct. 2018, doi: 10.2174/1874104501812010111. DOI: https://doi.org/10.2174/1874104501812010111
L. Chen and D. J. Waxman, “Cytochrome P450 gene-directed enzyme prodrug therapy (GDEPT) for cancer.,” Curr. Pharm. Des., vol. 8, no. 15, pp. 1405–1416, 2002, doi: 10.2174/1381612023394566. DOI: https://doi.org/10.2174/1381612023394566
Y. Jounaidi, C.-S. Chen, G. J. Veal, and D. J. Waxman, “Enhanced antitumor activity of P450 prodrug-based gene therapy using the low Km cyclophosphamide 4-hydroxylase P450 2B11.,” Mol. Cancer Ther., vol. 5, no. 3, pp. 541–555, Mar. 2006, doi: 10.1158/1535-7163.MCT-05-0321. DOI: https://doi.org/10.1158/1535-7163.MCT-05-0321
P. Roy and D. J. Waxman, “Activation of oxazaphosphorines by cytochrome P450: application to gene-directed enzyme prodrug therapy for cancer.,” Toxicol In Vitro, vol. 20, no. 2, pp. 176–186, Mar. 2006, doi: 10.1016/j.tiv.2005.06.046. DOI: https://doi.org/10.1016/j.tiv.2005.06.046
G. Voelcker, “The mechanism of action of cyclophosphamide and its consequences for the development of a new generation of oxazaphosphorine cytostatics,” Sci. Pharm., vol. 88, no. 4, p. 42, Sep. 2020, doi: 10.3390/scipharm88040042. DOI: https://doi.org/10.3390/scipharm88040042
L. H. Fraiser, S. Kanekal, and J. P. Kehrer, “Cyclophosphamide toxicity. Characterising and avoiding the problem.,” Drugs, vol. 42, no. 5, pp. 781–795, Nov. 1991, doi: 10.2165/00003495-199142050-00005. DOI: https://doi.org/10.2165/00003495-199142050-00005
M. C. E. McFadyen, W. T. Melvin, and G. I. Murray, “Cytochrome P 450 enzymes: Novel options for cancer therapeutics,” Mol. Cancer Ther., vol. 3, no. 3, pp. 363–371, Mar. 2004, doi: 10.1158/1535-7163.363.3.3. DOI: https://doi.org/10.1158/1535-7163.363.3.3
H. O. McCarthy et al., “Bioreductive GDEPT using cytochrome P450 3A4 in combination with AQ4N.,” Cancer Gene Ther., vol. 10, no. 1, pp. 40–48, Jan. 2003, doi: 10.1038/sj.cgt.7700522. DOI: https://doi.org/10.1038/sj.cgt.7700522
B. Mittal, S. Tulsyan, S. Kumar, R. D. Mittal, and G. Agarwal, “Cytochrome P450 in cancer susceptibility and treatment.,” Adv. Clin. Chem., vol. 71, pp. 77–139, Jul. 2015, doi: 10.1016/bs.acc.2015.06.003. DOI: https://doi.org/10.1016/bs.acc.2015.06.003
D. R. Nelson et al., “The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature.,” DNA Cell Biol., vol. 12, no. 1, pp. 1–51, Feb. 1993, doi: 10.1089/dna.1993.12.1. DOI: https://doi.org/10.1089/dna.1993.12.1
P. Urban, T. Lautier, D. Pompon, and G. Truan, “Ligand access channels in cytochrome P450 enzymes: A review.,” Int. J. Mol. Sci., vol. 19, no. 6, May 2018, doi: 10.3390/ijms19061617. DOI: https://doi.org/10.3390/ijms19061617
M. Zhao et al., “Cytochrome P450 enzymes and drug metabolism in humans.,” Int. J. Mol. Sci., vol. 22, no. 23, Nov. 2021, doi: 10.3390/ijms222312808. DOI: https://doi.org/10.3390/ijms222312808
S. P. Rendic and F. P. Guengerich, “Human Family 1-4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update.,” Arch. Toxicol., vol. 95, no. 2, pp. 395–472, Feb. 2021, doi: 10.1007/s00204-020-02971-4. DOI: https://doi.org/10.1007/s00204-020-02971-4
L. Waskell and J.-J. P. Kim, “Electron transfer partners of cytochrome P450,” in Cytochrome P450, P. R. Ortiz de Montellano, Ed. Cham: Springer International Publishing, 2015, pp. 33–68. DOI: https://doi.org/10.1007/978-3-319-12108-6_2
M. Rooseboom, J. N. M. Commandeur, and N. P. E. Vermeulen, “Enzyme-catalyzed activation of anticancer prodrugs.,” Pharmacol. Rev., vol. 56, no. 1, pp. 53–102, Mar. 2004, doi: 10.1124/pr.56.1.3. DOI: https://doi.org/10.1124/pr.56.1.3
F. P. Guengerich, “Cytochrome P450 Enzymes,” in Comprehensive Toxicology, Second Edition., vol. 4, C. A. McQueen, Ed. Oxford: Elsevier, 2010, pp. 41–76. DOI: https://doi.org/10.1016/B978-0-08-046884-6.00404-8
L. Quiñones S et al., “Papel de las enzimas citocromo p450 en el metabolismo de fármacos antineoplásicos: Situación actual y perspectivas terapéuticas,” Rev. méd. Chile, vol. 136, no. 10, Oct. 2008, doi: 10.4067/S0034-98872008001000015. DOI: https://doi.org/10.4067/S0034-98872008001000015
F. P. Guengerich, “A history of the roles of cytochrome P450 enzymes in the toxicity of drugs.,” Toxicol. Res., vol. 37, no. 1, pp. 1–23, Jan. 2021, doi: 10.1007/s43188-020-00056-z. DOI: https://doi.org/10.1007/s43188-020-00056-z
A. Gaedigk et al., “The pharmacogene variation (pharmvar) consortium: incorporation of the human cytochrome P450 (CYP) allele nomenclature database.,” Clin. Pharmacol. Ther., vol. 103, no. 3, pp. 399–401, Mar. 2018, doi: 10.1002/cpt.910. DOI: https://doi.org/10.1002/cpt.910
T. K. Chang, G. F. Weber, C. L. Crespi, and D. J. Waxman, “Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes.,” Cancer Res., vol. 53, no. 23, pp. 5629–5637, Dec. 1993.
Z. Huang, P. Roy, and D. J. Waxman, “Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide.,” Biochem. Pharmacol., vol. 59, no. 8, pp. 961–972, Apr. 2000, doi: 10.1016/s0006-2952(99)00410-4. DOI: https://doi.org/10.1016/S0006-2952(99)00410-4
M. Furlanut and L. Franceschi, “Pharmacology of ifosfamide.,” Oncology, vol. 65 Suppl 2, pp. 2–6, 2003, doi: 10.1159/000073350. DOI: https://doi.org/10.1159/000073350
C.-S. Chen, J. T. Lin, K. A. Goss, Y. He, J. R. Halpert, and D. J. Waxman, “Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics.,” Mol. Pharmacol., vol. 65, no. 5, pp. 1278–1285, May 2004, doi: 10.1124/mol.65.5.1278. DOI: https://doi.org/10.1124/mol.65.5.1278
L. Sun, C. S. Chen, D. J. Waxman, H. Liu, J. R. Halpert, and S. Kumar, “Re-engineering cytochrome P450 2B11dH for enhanced metabolism of several substrates including the anti-cancer prodrugs cyclophosphamide and ifosfamide.,” Arch. Biochem. Biophys., vol. 458, no. 2, pp. 167–174, Feb. 2007, doi: 10.1016/j.abb.2006.12.021. DOI: https://doi.org/10.1016/j.abb.2006.12.021
T.-A. Nguyen et al., “Improvement of cyclophosphamide activation by CYP2B6 mutants: from in silico to ex vivo.,” Mol. Pharmacol., vol. 73, no. 4, pp. 1122–1133, Apr. 2008, doi: 10.1124/mol.107.042861. DOI: https://doi.org/10.1124/mol.107.042861
T. K. H. Chang, L. Yu, J. A. Goldstein, and D. J. Waxman, “Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359allele as low-Km catalysts of cyclophosphamide and ifosfamide activation,” Pharmacogenetics, vol. 7, no. 3, pp. 211–221, Jun. 1997 [Online]. Available: https://journals.lww.com/jpharmacogenetics/abstract/1997/06000/identification_of_the_polymorphically_expressed.6.aspx. [Accessed: 24-Apr-2024] DOI: https://doi.org/10.1097/00008571-199706000-00006
L. Griskevicius et al., “Bioactivation of cyclophosphamide: the role of polymorphic CYP2C enzymes.,” Eur. J. Clin. Pharmacol., vol. 59, no. 2, pp. 103–109, Jun. 2003, doi: 10.1007/s00228-003-0590-6. DOI: https://doi.org/10.1007/s00228-003-0590-6
Z. Desta and D. A. Flockhart, “Pharmacogenetics of drug metabolism,” in Clinical and translational science, Elsevier, 2017, pp. 327–345. DOI: https://doi.org/10.1016/B978-0-12-802101-9.00018-1
F. Bohnenstengel, U. Hofmann, M. Eichelbaum, and H. K. Kroemer, “Characterization of the cytochrome P450 involved in side-chain oxidation of cyclophosphamide in humans.,” Eur. J. Clin. Pharmacol., vol. 51, no. 3–4, pp. 297–301, 1996, doi: 10.1007/s002280050201. DOI: https://doi.org/10.1007/s002280050201
I. El-Serafi et al., “Cytochrome P450 2J2, a new key enzyme in cyclophosphamide bioactivation and a potential biomarker for hematological malignancies.,” Pharmacogenomics J., vol. 15, no. 5, pp. 405–413, Oct. 2015, doi: 10.1038/tpj.2014.82. DOI: https://doi.org/10.1038/tpj.2014.82
G. F. Weber and D. J. Waxman, “Activation of the anti-cancer drug ifosphamide by rat liver microsomal P450 enzymes.,” Biochem. Pharmacol., vol. 45, no. 8, pp. 1685–1694, Apr. 1993, doi: 10.1016/0006-2952(93)90310-s. DOI: https://doi.org/10.1016/0006-2952(93)90310-S
O. Gotoh, “Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences.,” J. Biol. Chem., vol. 267, no. 1, pp. 83–90, Jan. 1992, doi: 10.1016/S0021-9258(18)48462-1. DOI: https://doi.org/10.1016/S0021-9258(18)48462-1
H. Starobova and I. Vetter, “Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy.,” Front. Mol. Neurosci., vol. 10, p. 174, May 2017, doi: 10.3389/fnmol.2017.00174. DOI: https://doi.org/10.3389/fnmol.2017.00174
A. A. Stavrovskaya, “Cellular mechanisms of multidrug resistance of tumor cells.,” Biochemistry Mosc, vol. 65, no. 1, pp. 95–106, Jan. 2000.
D. J. Waxman and P. S. Schwartz, “Harnessing apoptosis for improved anticancer gene therapy.,” Cancer Res., vol. 63, no. 24, pp. 8563–8572, Dec. 2003.
S. E. Carrera-Pacheco, A. Mueller, J. A. Puente-Pineda, J. Zúñiga-Miranda, and L. Guaman, “Designing cytochrome P450 enzymes for use in cancer gene therapy ,” Frontiers in Bioengineering and Biotechnology, May 2024 [Online]. Available: http://doi: 10.3389/fbioe.2024.1405466. [Accessed: 20-May-2024] DOI: https://doi.org/10.3389/fbioe.2024.1405466
K. L. Harris et al., “Ancestral Sequence Reconstruction of a Cytochrome P450 Family Involved in Chemical Defense Reveals the Functional Evolution of a Promiscuous, Xenobiotic-Metabolizing Enzyme in Vertebrates.,” Mol. Biol. Evol., vol. 39, no. 6, Jun. 2022, doi: 10.1093/molbev/msac116. DOI: https://doi.org/10.1093/molbev/msac116
R. E. S. Thomson, S. E. Carrera-Pacheco, and E. M. J. Gillam, “Engineering functional thermostable proteins using ancestral sequence reconstruction.,” J. Biol. Chem., vol. 298, no. 10, p. 102435, Oct. 2022, doi: 10.1016/j.jbc.2022.102435. DOI: https://doi.org/10.1016/j.jbc.2022.102435
Y. Gumulya et al., “Engineering highly functional thermostable proteins using ancestral sequence reconstruction,” Nat. Catal., vol. 1, no. 11, pp. 878–888, Oct. 2018, doi: 10.1038/s41929-018-0159-5. DOI: https://doi.org/10.1038/s41929-018-0159-5
S. Kumar, C. S. Chen, D. J. Waxman, and J. R. Halpert, “Directed evolution of mammalian cytochrome P450 2B1: mutations outside of the active site enhance the metabolism of several substrates, including the anticancer prodrugs cyclophosphamide and ifosfamide.,” J. Biol. Chem., vol. 280, no. 20, pp. 19569–19575, May 2005, doi: 10.1074/jbc.M500158200. DOI: https://doi.org/10.1074/jbc.M500158200
C. S. Chen, Y. Jounaidi, T. Su, and D. J. Waxman, “Enhancement of intratumoral cyclophosphamide pharmacokinetics and antitumor activity in a P450 2B11-based cancer gene therapy model.,” Cancer Gene Ther., vol. 14, no. 12, pp. 935–944, Dec. 2007, doi: 10.1038/sj.cgt.7701092. DOI: https://doi.org/10.1038/sj.cgt.7701092
M. Tychopoulos, L. Corcos, P. Genne, P. Beaune, and I. de Waziers, “A virus-directed enzyme prodrug therapy (VDEPT) strategy for lung cancer using a CYP2B6/NADPH-cytochrome P450 reductase fusion protein.,” Cancer Gene Ther., vol. 12, no. 5, pp. 497–508, May 2005, doi: 10.1038/sj.cgt.7700817. DOI: https://doi.org/10.1038/sj.cgt.7700817
W. Touati et al., “A suicide gene therapy combining the improvement of cyclophosphamide tumor cytotoxicity and the development of an anti-tumor immune response.,” Curr. Gene Ther., vol. 14, no. 3, pp. 236–246, 2014, doi: 10.2174/1566523214666140424152734. DOI: https://doi.org/10.2174/1566523214666140424152734
J. Mercapide, G. Rappa, F. Anzanello, J. King, O. Fodstad, and A. Lorico, “Primary gene-engineered neural stem/progenitor cells demonstrate tumor-selective migration and antitumor effects in glioma.,” Int. J. Cancer, vol. 126, no. 5, pp. 1206–1215, Mar. 2010, doi: 10.1002/ijc.24809. DOI: https://doi.org/10.1002/ijc.24809
T. Lautier, P. Urban, J. Loeper, L. Jezequel, D. Pompon, and G. Truan, “Ordered chimerogenesis applied to CYP2B P450 enzymes.,” Biochim. Biophys. Acta, vol. 1860, no. 7, pp. 1395–1403, Jul. 2016, doi: 10.1016/j.bbagen.2016.03.028. DOI: https://doi.org/10.1016/j.bbagen.2016.03.028
C. Ekhart, V. D. Doodeman, S. Rodenhuis, P. H. M. Smits, J. H. Beijnen, and A. D. R. Huitema, “Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide.,” Pharmacogenet. Genomics, vol. 18, no. 6, pp. 515–523, Jun. 2008, doi: 10.1097/FPC.0b013e3282fc9766. DOI: https://doi.org/10.1097/FPC.0b013e3282fc9766
W. Shu et al., “Cytochrome P450 Genetic Variations Can Predict mRNA Expression, Cyclophosphamide 4-Hydroxylation, and Treatment Outcomes in Chinese Patients With Non-Hodgkin’s Lymphoma.,” J. Clin. Pharmacol., vol. 57, no. 7, pp. 886–898, Jul. 2017, doi: 10.1002/jcph.878. DOI: https://doi.org/10.1002/jcph.878
V. McErlane et al., “A cytochrome P450 2B6 meditated gene therapy strategy to enhance the effects of radiation or cyclophosphamide when combined with the bioreductive drug AQ4N.,” J. Gene Med., vol. 7, no. 7, pp. 851–859, Jul. 2005, doi: 10.1002/jgm.728. DOI: https://doi.org/10.1002/jgm.728
M. Löhr et al., “Microencapsulated, CYP2B1-transfected cells activating ifosfamide at the site of the tumor: the magic bullets of the 21st century.,” Cancer Chemother. Pharmacol., vol. 49 Suppl 1, pp. S21-4, May 2002, doi: 10.1007/s00280-002-0448-0. DOI: https://doi.org/10.1007/s00280-002-0448-0
J. P. Braybrooke et al., “Phase I study of MetXia-P450 gene therapy and oral cyclophosphamide for patients with advanced breast cancer or melanoma.,” Clin. Cancer Res., vol. 11, no. 4, pp. 1512–1520, Feb. 2005, doi: 10.1158/1078-0432.CCR-04-0155. DOI: https://doi.org/10.1158/1078-0432.CCR-04-0155
P. R. Ortiz de Montellano, “Cytochrome P450-activated prodrugs.,” Future Med. Chem., vol. 5, no. 2, pp. 213–228, Feb. 2013, doi: 10.4155/fmc.12.197. DOI: https://doi.org/10.4155/fmc.12.197
M. C. Stipp and A. Acco, “Involvement of cytochrome P450 enzymes in inflammation and cancer: a review.,” Cancer Chemother. Pharmacol., vol. 87, no. 3, pp. 295–309, Mar. 2021, doi: 10.1007/s00280-020-04181-2. DOI: https://doi.org/10.1007/s00280-020-04181-2
O. M. Malekshah, X. Chen, A. Nomani, S. Sarkar, and A. Hatefi, “Enzyme/prodrug systems for cancer gene therapy.,” Curr. Pharmacol. Rep., vol. 2, no. 6, pp. 299–308, Dec. 2016, doi: 10.1007/s40495-016-0073-y. DOI: https://doi.org/10.1007/s40495-016-0073-y