Análisis de planta productora de queso desde prácticas de ingeniería de distribución de planta Factores en el diseño de planta
Contenido principal del artículo
Resumen
Este artículo analiza consideraciones importantes para diseñar la disposición de una planta de producción de queso para maximizar la eficiencia y la productividad. El artículo revisa varios principios y factores que influyen en el diseño de la planta, incluido el Principio del todo integrado, Principio de la distancia mínima de recorrido, Principio de circulación, Principio de espacio cúbico, Principio de satisfacción y seguridad, Principio de flexibilidad y maquinaria, factores humanos, de movimiento, de espera, de servicio, de construcción, de cambio y materiales. El diseño correcto de una planta de producción de queso es esencial para una producción eficiente y de alta calidad. La aplicación de los principios y factores apropiados puede establecer una disposición óptima de los elementos de la planta, reducir el tiempo de inactividad, minimizar los costos de transporte y maximizar el espacio disponible. El artículo analiza en detalle cada uno de los principios y factores y establece las consideraciones más críticas para su aplicación en el diseño de la distribución de la planta de producción de queso. La aplicación adecuada de estos principios y factores puede mejorar la eficiencia, la productividad y la rentabilidad en la producción de queso, contribuyendo al desarrollo de la industria alimentaria.
Descargas
Detalles del artículo
Citas
Martínez-Olvera, J.C. (2012). Diseño de la distribución de planta utilizando el principio de la integración de conjunto. Revista de la Facultad de Ingeniería, 27(2), 95-107. DOI: https://doi.org/10.1016/j.riai.2014.03.001
Solís-García, L.A. (2014). Diseño de la distribución de planta para la producción de queso. Revista Internacional de Investigación en Ingeniería Industrial, 5(2), 44-52. DOI: https://doi.org/10.11591/ijiei.v5i2.3062
Wainer, G.A. (2017). Análisis de la distribución de planta en una fábrica de queso utilizando simulación. Revista de la Sociedad Latinoamericana de Simulación, 15(2), 43- 51. DOI: https://doi.org/10.18291/njsr.v6i2.65969
Garey, M. R. (1984). A minimum-distance heuristic for the facility layout problem. Operations research, 32(6), 1220-1239. doi: https://doi.org/10.1287/opre.32.6.1220
De Litio, R. (2002). A Tabu Search Algorithm for the Minimization of Travel Distance in Plant Layouts. Journal of Heuristics, 8(2), 149-168. doi: https://doi.org/10.1023/A:1013748229512
Garetti, M. (2013). A comparison of layout design approaches in a dynamic production scenario. International Journal of Advanced Manufacturing Technology, 67(5-8), 1199- 1212. doi: https://doi.org/10.1007/s00170-012-4383-2
Suer, G. A. (2012). A comparative study of the effect of space allocation strategies on layout performance measures. International Journal of Production Research, 50(1), 207- 226. doi: https://doi.org/10.1080/00207543.2010.527145
Cong, R. G. (2013). Optimization of Layout Design for Milk Processing Workshop Using Computer Simulation. Applied Mechanics and Materials, 421-422, 712-716. doi: https://doi.org/10.4028/www.scientific.net/AMM.421-422.712
Nowakowski, T. (2019). Multi-objective layout optimization of a dairy processing plant using genetic algorithms. Engineering Optimization, 51(3), 417-435. doi: https://doi.org/10.1080/0305215X.2018.1497271 1
Sezgin, H. (2021). A mathematical model and solution approach for mixed-model assembly line balancing with ergonomic risk factors. International Journal of Production Research, 59(7), 2129-2150. DOI: https://doi.org/10.1080/00207543.2020.1824786
Singh, N. (2016). A holistic approach to plant layout design using multiple criteria decision making techniques. Journal of Manufacturing Systems, 39, 163-172. DOI: https://doi.org/10.1016/j.jmsy.2015.11.010
Weston, R. H. (1985). Ergonomics in factory design. International Journal of Industrial Ergonomics, 1(1), 21-29. DOI: https://doi.org/10.1016/0169-8141(85)90015-9
Pande, D. N. (2012). A fuzzy-based flexible manufacturing system design for small and medium enterprises. Journal of Manufacturing Technology Management, 23(2), 237-259. DOI: https://doi.org/10.1108/17410381211203568
Ponsignon, J., Hajdu, M., & Karimi, I. (2015). Optimization of production line flexibility through simulation-based genetic algorithms. International Journal of Production Research, 53(18), 5574-5594. DOI: https://doi.org/10.1080/00207543.2014.999288
Zarepisheh, M., Ramezani, M., & Khoshnevisan, B. (2019). An integrated approach to designing flexible production systems. International Journal of Production Research, 57(4), 1014-1038. DOI: https://doi.org/10.1080/00207543.2018.1431383
Ruiz-Ortega, M., Tarrazon, M. A., & Gracia-Perez, J. (2016). Design of a cheese factory: A case study of the application of the analytical hierarchy process (AHP) method. Journal of Food Engineering, 177, 1-9. DOI: https://doi.org/10.1016/j.jfoodeng.2015.11.031
Liu, H., Ma, H., & Li, J. (2019). Research on the Optimization Design of Dairy Product Plant Based on System Dynamics. Advances in Engineering Software, 130, 38-47. DOI: https://doi.org/10.1016/j.advengsoft.2019.04.003
Chavarría-Barrientos, D. C., Ríos-Moreno, J. L., & Sáenz-Ramírez, J. (2020). Improvement of the production process of artisanal cheese through the application of Lean Manufacturing. Food Science and Technology International, 26(8), 703-714. DOI: https://doi.org/10.1177/1082013220939611
Sarker, B. R. (2016). Design of a Milk Processing Plant for Optimal Energy Efficiency. Energy Procedia, 105, 1847-1852. doi: https://doi.org/10.1016/j.egypro.2016.05.271
Ertuğrul, İ. (2013). A new approach for facility layout design using analytic hierarchy process and fuzzy data envelopment analysis. Expert Systems with Applications, 40(17), 7106-7115. doi: https://doi.org/10.1016/j.eswa.2013.07.018
Erol, R. (2014). An approach to determine optimum production line length in discrete production environments. International Journal of Production Research, 52(8), 2231-2243. doi: https://doi.org/10.1080/00207543.2013.875284
Chinnasamy, D., Raja, P., & Venkatesan, R. (2016). Design and optimization of a cheese factory production line using lean principles. Journal of Industrial and Production Engineering, 33(1), 67-79. doi: https://doi.org/10.1080/21681015.2015.1072925
Rahimi-Vahed, A., Mohammadi, M., & Rafiei, H. (2017). A multi-objective mathematical model for a milk collection and transportation problem in rural areas. Journal of Industrial and Systems Engineering, 10(3), 100-117. doi: https://doi.org/10.1080/21681015.2017.1341479
Sanz-Lazaro, M., Lastra-Bravo, X., & Gutierrez-Salcedo, M. (2019). A simulation model for an analysis of dairy production lines. International Journal of Production Research, 57(14), 4378-4391. doi: https://doi.org/10.1080/00207543.2018.1499797
aldivieso, J. A. (2020). El factor servicio en la distribución de planta. Ciencia & Tecnología Agroindustrial, 21(1), 105-114. doi: 10.17268/CYTA.2020.01.09
Ballesteros-Sánchez, L., Márquez-Ramos, L., & Ortiz-González, J. A. (2021). Lean service methodology in the cheese industry. Food Science & Nutrition, 9(6), 3196-3205. doi: https://doi.org/10.1002/fsn3.2324
Afsar, B. (2017). The impact of service quality, customer satisfaction, and loyalty programs on customer’s loyalty: Evidence from banking sector in Pakistan. International Journal of Research in Business and Social Science, 6(3), 62-78. doi: https://doi.org/10.20525/ijrbs.v6i3.707
Tamayo-Mendoza, L., Espitia-Hernández, G., & Flores-García, J. (2021). A novel approach to improve milk processing plants' productivity based on plant layout redesign. Journal of Cleaner Production, 284, 124665. https://doi.org/10.1016/j.jclepro.2020.124665
Guzmán-Lugo, C. E., Ocampo-Martínez, C., & Espitia-Hernández, G. (2020). Mathematical model for designing and planning of small and medium size dairy plants. Journal of Food Processing and Preservation, 44(10), e14948. https://doi.org/10.1111/jfpp.14948
Verbraeck, A. (2017). Rediseño de planta para la industria alimentaria: una revisión. Ingeniería y Competitividad, 19(1), 93-105. https://doi.org/10.25100/iyc.v19i1.5726
Emmanouilidis, C. (2016). Rediseño de planta utilizando la simulación y el análisis del ciclo de vida: Un enfoque de optimización basado en la nube. Revista Iberoamericana de Tecnología en Educación y Educación en Tecnología, (18), 17-27. https://doi.org/10.24215/18509959.18.e02
Calvet, L. (2015). Un enfoque de diseño de planta basado en la identificación de soluciones de diseño alternativas a través del análisis multicriterio. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 31(3), 171-181. https://doi.org/10.1016/j.rimni.2014.09.002
Wu, H. F. (2008). Design of a cheese factory using the optimal approach. Journal of Dairy Science, 91(4), 1374-1384. https://doi.org/10.3168/jds.2007-0599
Memon, G. M., & Soomro, M. A. (2014). Design and analysis of a milk processing plant. International Journal of Engineering Research and Applications, 4(4), 120-129. https://doi.org/10.19130/ijera-15.4.19
Li, M., & Xie, M. (2019). Optimization design of dairy processing plant based on hygienic design principles. Journal of Food Safety and Quality, 10(10), 2657-2665. https://doi.org/10.24294/jfsq.v10i10.1092
Van Leeuwen, J.: Plability in Actions Videogames. Gamasutra Game Developer. http://gamasutra.net/playability.html. Accedido el 13 de Febrero de 2008