Biodegradable composite material for orthopedic applications: some considerations on microstructural characterization, electrochemistry and mechanical properties.

Main Article Content

Juan Carlos Rincon Montenegro

Abstract

In recent years, a new wave of biomaterials have been developed for a variety of applications. Researchers have focused on improving the essential characteristics and properties of biomaterials in orthopedic applications. Biocompatibility, bioactivity, and control of corrosion mechanisms in biodegradable materials have been the target of study and development of new innovative materials in this area of science. biomedical. By implementing the addition of a reinforcing ceramic material in a biodegradable metal alloy matrix, several of these characteristics can be improved, and in addition to these, mechanical, surface and even osseointegration properties. In this review, an attempt will be made to provide a context for the microstructural, electrochemical, and mechanical characterization of these biomaterials. as well as applications and synthesis techniques.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rincon Montenegro, J. C. (2023). Biodegradable composite material for orthopedic applications: some considerations on microstructural characterization, electrochemistry and mechanical properties. INNOVATION & DEVELOPMENT IN ENGINEERING AND APPLIED SCIENCES, 5(1), 9. https://doi.org/10.53358/ideas.v5i1.870
Section
Mechanical, Mechatronics, Vehicle and Materials Engineering

References

P. Gutiérrez de Rozas Astigarraga, “Una visión histórica de la cirugía ortopédica y traumatológica a través del desarrollo de los bioimplantes, “Universidad de Cantabria, 2013.

E. Marchetti, O. May, J. Girard, H.-F. Hildebrand, H. Migaud, and G. Pasquier, “Biomateriales en cirugía ortopédica”, EMC - Técnicas Quirúrgicas - Ortopedia y Traumatología, 2(3), pp. 1–24, 2010.

A. Aybar, “Historia- concepto de deformidad y disfuncion- clasificacion de enfermedades del aparato locomotor”, pp. 63–72, [Online]. Available: http://www.sld.cu/galerias/pdf/sitios/rehabilitacion-doc/clase06.pdf.

Espinoza Coronado, W. (2020). Distribución de planta y su influencia en la productividad en el área de producción en una empresa del sector metalmecánica en los últimos 10 años. N. Eliaz, “Degradation of implant material”, Degradation of Implant Materials, 9781461439, pp. 1–516, 2012

J. María Varaona, “Historia de la osteosíntesis,” Revista de la Asociación Argentina de Ortopedia y Traumatología, 75(3), 2010.

A. Vennimalai Rajan, C. Mathalai Sundaram, and A. Vembathu Rajesh, “Mechanical and morphological investigation of bio-degradable magnesium AZ31 alloy for an orthopedic application,” Materials Today: Proceedings, 21, pp. 272–277, 2020.

M. Carboneras Chamorro et al., “Materiales metálicos biodegradables en el campo biomédico”, Acta Científica y Tecnológica, 19, pp. 30–34, 2011, [Online]. Available: https://core.ac.uk/download/pdf/36133460.pdf.

M. Navarro, A. Michiardi, O. Castaño, and J. A. Planell, “Biomaterials in orthopaedics,” Journal of the Royal Society Interface, 5(27). Royal Society, pp. 1137–1158, Oct. 06, 2008.

S. V. Gohil, S. Suhail, J. Rose, T. Vella, and L. S. Nair, “Polymers and Composites for Orthopedic Applications,” in Materials and Devices for Bone Disorders, Elsevier Inc., 2017, pp. 349–403.

H. Kabir, K. Munir, C. Wen, and Y. Li, “Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives,” Bioactive Materials, 6(3). KeAi Communications Co., pp. 836–879, Mar. 01, 2021.

V. K. Bommala, M. G. Krishna, and C. T. Rao, “Magnesium matrix composites for biomedical applications: A review,” Journal of Magnesium and Alloys, 7(1). National Engg. Reaserch Center for Magnesium Alloys, pp. 72–79, Mar. 01, 2019.

J. B. Park, “Aluminum Oxide: Biomedical Applications,” in Concise Encyclopedia of Advanced Ceramic Materials, Elsevier, 1991, pp. 13–16.

H. Aghajani Derazkola and A. Simchi, “Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly(methyl methacrylate)-based nanocomposites prepared by friction stir processing,” Journal of the Mechanical Behavior of Biomedical Materials, 79, pp. 246–253, Mar. 2018.

Prakash, S. Singh, K. Verma, S. S. Sidhu, and S. Singh, “Synthesis and characterization of Mg-Zn-Mn-HA composite by spark plasma sintering process for orthopedic applications,” Vacuum, 155, pp. 578–584, Sep. 2018.

Y. H. He, Y. Q. Zhang, Y. H. Jiang, and R. Zhou, “Effect of HA (Hydroxyapatite) content on the microstructure, mechanical and corrosion properties of ([Formula presented])-xHA biocomposites synthesized by sparkle plasma sintering,” Vacuum, 131, pp. 176–180, Sep. 2016.

S. V. Dorozhkin, “Calcium orthophosphate coatings on magnesium and its biodegradable alloys,” Acta Biomaterialia, 10(7). Elsevier Ltd, pp. 2919–2934, Jul. 2014.

B. Heimann, “Magnesium alloys for biomedical application: Advanced corrosion control through surface coating,” Surface and Coatings Technology, p. 126521, Oct. 2020.

P. Li et al., “Selection of extraction medium influences cytotoxicity of zinc and its alloys,” Acta Biomaterialia, 98, pp. 235–245, Oct. 2019.

ASTM, “ASTM G59-97(2020),” Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements ASTM International, West Conshohocken, PA, 2020. http://www.astm.org/ (accessed Dec. 06, 2020).

ASTM, “ASTM G31-72(2004),” Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, PA, 2004. https://www.astm.org (accessed Dec. 06, 2020).

Z. Cui, Y. Zhang, Y. Cheng, D. Gong, and W. Wang, “Microstructure, mechanical, corrosion properties and cytotoxicity of beta calcium polyphosphate reinforced ZK61 magnesium alloy composite by spark plasma sintering,” Materials Science and Engineering C, 99, pp. 1035–1047, Jun. 2019.

P. Díaz Campbell-Smith, “Sinterización por Spark Plasma Sintering (SPS) de materiales compuestos para herramientas de corte-Trabajo fin de máster-Universidad de Oviedo.”

C. Prakash, S. Singh, B. S. Pabla, S. S. Sidhu, and M. S. Uddin, “Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering,” Materials and Manufacturing Processes, 34(4), pp. 357–368, Mar. 2019.

D. Kumar, “Bio-mechanical characterization of Mg-composite implant developed by spark plasma sintering technique,” Materials Today: Proceedings, Jul. 2020.

H. R. Zheng, Z. Li, C. You, D. B. Liu, and M. F. Chen, “Effects of MgO modified β-TCP nanoparticles on the microstructure and properties of β-TCP/Mg-Zn-Zr composites,” Bioactive Materials, 2(1), pp. 1–9, Mar. 2017.

S. Jayasathyakawin, M. Ravichandran, N. Baskar, C. A. Chairman, and R. Balasundaram, “Magnesium matrix composite for biomedical applications through powder metallurgy – Review,” in Materials Today: Proceedings, Jan. 2020, 27, pp. 736–741.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.