Analysis of cheese production plant from plant layout engineering practices. Factors in plant design

Main Article Content

Susana C. Rueda
https://orcid.org/0009-0006-3224-3025
Jefferson X. Pluas
https://orcid.org/0009-0005-4798-446X
Marianela S. Morante
https://orcid.org/0000-0003-4167-6042
Aldo Gerardo Parrales León
https://orcid.org/0000-0002-2602-2086

Abstract

This article discusses important considerations for designing the layout of a cheese production plant to maximize efficiency and productivity. The article reviews various principles and factors that influence plant layout design, including the Principle of the integrated whole, Principle of the minimum travel distance, Principle of circulation, Principle of cubic space, Principle of satisfaction and safety, Principle of flexibility, and machinery, human, movement, waiting, service, building, change, and material factors. The correct layout of a cheese production plant is essential for efficient and high-quality production. The application of the appropriate principles and factors can establish an optimal arrangement of the plant's elements, reduce downtime, minimize transport costs, and maximize available space. The article discusses each of the principles and factors in detail and establishes the most critical considerations for their application in designing the cheese production plant's layout. Proper application of these principles and factors can improve efficiency, productivity, and profitability in cheese production, contributing to the development of the food industry.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rueda, S. C., Pluas , J. X., Morante, M. S., & Parrales León, A. G. (2023). Analysis of cheese production plant from plant layout engineering practices.: Factors in plant design. INNOVATION & DEVELOPMENT IN ENGINEERING AND APPLIED SCIENCES, 4(2), 14. https://doi.org/10.53358/ideas.v4i2.874
Section
Ingeniería Industrial

References

Martínez-Olvera, J.C. (2012). Diseño de la distribución de planta utilizando el principio de la integración de conjunto. Revista de la Facultad de Ingeniería, 27(2), 95-107. DOI: https://doi.org/10.1016/j.riai.2014.03.001

Solís-García, L.A. (2014). Diseño de la distribución de planta para la producción de queso. Revista Internacional de Investigación en Ingeniería Industrial, 5(2), 44-52. DOI: https://doi.org/10.11591/ijiei.v5i2.3062

Wainer, G.A. (2017). Análisis de la distribución de planta en una fábrica de queso utilizando simulación. Revista de la Sociedad Latinoamericana de Simulación, 15(2), 43- 51. DOI: https://doi.org/10.18291/njsr.v6i2.65969

Garey, M. R. (1984). A minimum-distance heuristic for the facility layout problem. Operations research, 32(6), 1220-1239. doi: https://doi.org/10.1287/opre.32.6.1220

De Litio, R. (2002). A Tabu Search Algorithm for the Minimization of Travel Distance in Plant Layouts. Journal of Heuristics, 8(2), 149-168. doi: https://doi.org/10.1023/A:1013748229512

Garetti, M. (2013). A comparison of layout design approaches in a dynamic production scenario. International Journal of Advanced Manufacturing Technology, 67(5-8), 1199- 1212. doi: https://doi.org/10.1007/s00170-012-4383-2

Suer, G. A. (2012). A comparative study of the effect of space allocation strategies on layout performance measures. International Journal of Production Research, 50(1), 207- 226. doi: https://doi.org/10.1080/00207543.2010.527145

Cong, R. G. (2013). Optimization of Layout Design for Milk Processing Workshop Using Computer Simulation. Applied Mechanics and Materials, 421-422, 712-716. doi: https://doi.org/10.4028/www.scientific.net/AMM.421-422.712

Nowakowski, T. (2019). Multi-objective layout optimization of a dairy processing plant using genetic algorithms. Engineering Optimization, 51(3), 417-435. doi: https://doi.org/10.1080/0305215X.2018.1497271 1

Sezgin, H. (2021). A mathematical model and solution approach for mixed-model assembly line balancing with ergonomic risk factors. International Journal of Production Research, 59(7), 2129-2150. DOI: https://doi.org/10.1080/00207543.2020.1824786

Singh, N. (2016). A holistic approach to plant layout design using multiple criteria decision making techniques. Journal of Manufacturing Systems, 39, 163-172. DOI: https://doi.org/10.1016/j.jmsy.2015.11.010

Weston, R. H. (1985). Ergonomics in factory design. International Journal of Industrial Ergonomics, 1(1), 21-29. DOI: https://doi.org/10.1016/0169-8141(85)90015-9

Pande, D. N. (2012). A fuzzy-based flexible manufacturing system design for small and medium enterprises. Journal of Manufacturing Technology Management, 23(2), 237-259. DOI: https://doi.org/10.1108/17410381211203568

Ponsignon, J., Hajdu, M., & Karimi, I. (2015). Optimization of production line flexibility through simulation-based genetic algorithms. International Journal of Production Research, 53(18), 5574-5594. DOI: https://doi.org/10.1080/00207543.2014.999288

Zarepisheh, M., Ramezani, M., & Khoshnevisan, B. (2019). An integrated approach to designing flexible production systems. International Journal of Production Research, 57(4), 1014-1038. DOI: https://doi.org/10.1080/00207543.2018.1431383

Ruiz-Ortega, M., Tarrazon, M. A., & Gracia-Perez, J. (2016). Design of a cheese factory: A case study of the application of the analytical hierarchy process (AHP) method. Journal of Food Engineering, 177, 1-9. DOI: https://doi.org/10.1016/j.jfoodeng.2015.11.031

Liu, H., Ma, H., & Li, J. (2019). Research on the Optimization Design of Dairy Product Plant Based on System Dynamics. Advances in Engineering Software, 130, 38-47. DOI: https://doi.org/10.1016/j.advengsoft.2019.04.003

Chavarría-Barrientos, D. C., Ríos-Moreno, J. L., & Sáenz-Ramírez, J. (2020). Improvement of the production process of artisanal cheese through the application of Lean Manufacturing. Food Science and Technology International, 26(8), 703-714. DOI: https://doi.org/10.1177/1082013220939611

Sarker, B. R. (2016). Design of a Milk Processing Plant for Optimal Energy Efficiency. Energy Procedia, 105, 1847-1852. doi: https://doi.org/10.1016/j.egypro.2016.05.271

Ertuğrul, İ. (2013). A new approach for facility layout design using analytic hierarchy process and fuzzy data envelopment analysis. Expert Systems with Applications, 40(17), 7106-7115. doi: https://doi.org/10.1016/j.eswa.2013.07.018

Erol, R. (2014). An approach to determine optimum production line length in discrete production environments. International Journal of Production Research, 52(8), 2231-2243. doi: https://doi.org/10.1080/00207543.2013.875284

Chinnasamy, D., Raja, P., & Venkatesan, R. (2016). Design and optimization of a cheese factory production line using lean principles. Journal of Industrial and Production Engineering, 33(1), 67-79. doi: https://doi.org/10.1080/21681015.2015.1072925

Rahimi-Vahed, A., Mohammadi, M., & Rafiei, H. (2017). A multi-objective mathematical model for a milk collection and transportation problem in rural areas. Journal of Industrial and Systems Engineering, 10(3), 100-117. doi: https://doi.org/10.1080/21681015.2017.1341479

Sanz-Lazaro, M., Lastra-Bravo, X., & Gutierrez-Salcedo, M. (2019). A simulation model for an analysis of dairy production lines. International Journal of Production Research, 57(14), 4378-4391. doi: https://doi.org/10.1080/00207543.2018.1499797

aldivieso, J. A. (2020). El factor servicio en la distribución de planta. Ciencia & Tecnología Agroindustrial, 21(1), 105-114. doi: 10.17268/CYTA.2020.01.09

Ballesteros-Sánchez, L., Márquez-Ramos, L., & Ortiz-González, J. A. (2021). Lean service methodology in the cheese industry. Food Science & Nutrition, 9(6), 3196-3205. doi: https://doi.org/10.1002/fsn3.2324

Afsar, B. (2017). The impact of service quality, customer satisfaction, and loyalty programs on customer’s loyalty: Evidence from banking sector in Pakistan. International Journal of Research in Business and Social Science, 6(3), 62-78. doi: https://doi.org/10.20525/ijrbs.v6i3.707

Tamayo-Mendoza, L., Espitia-Hernández, G., & Flores-García, J. (2021). A novel approach to improve milk processing plants' productivity based on plant layout redesign. Journal of Cleaner Production, 284, 124665. https://doi.org/10.1016/j.jclepro.2020.124665

Guzmán-Lugo, C. E., Ocampo-Martínez, C., & Espitia-Hernández, G. (2020). Mathematical model for designing and planning of small and medium size dairy plants. Journal of Food Processing and Preservation, 44(10), e14948. https://doi.org/10.1111/jfpp.14948

Verbraeck, A. (2017). Rediseño de planta para la industria alimentaria: una revisión. Ingeniería y Competitividad, 19(1), 93-105. https://doi.org/10.25100/iyc.v19i1.5726

Emmanouilidis, C. (2016). Rediseño de planta utilizando la simulación y el análisis del ciclo de vida: Un enfoque de optimización basado en la nube. Revista Iberoamericana de Tecnología en Educación y Educación en Tecnología, (18), 17-27. https://doi.org/10.24215/18509959.18.e02

Calvet, L. (2015). Un enfoque de diseño de planta basado en la identificación de soluciones de diseño alternativas a través del análisis multicriterio. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 31(3), 171-181. https://doi.org/10.1016/j.rimni.2014.09.002

Wu, H. F. (2008). Design of a cheese factory using the optimal approach. Journal of Dairy Science, 91(4), 1374-1384. https://doi.org/10.3168/jds.2007-0599

Memon, G. M., & Soomro, M. A. (2014). Design and analysis of a milk processing plant. International Journal of Engineering Research and Applications, 4(4), 120-129. https://doi.org/10.19130/ijera-15.4.19

Li, M., & Xie, M. (2019). Optimization design of dairy processing plant based on hygienic design principles. Journal of Food Safety and Quality, 10(10), 2657-2665. https://doi.org/10.24294/jfsq.v10i10.1092

Van Leeuwen, J.: Plability in Actions Videogames. Gamasutra Game Developer. http://gamasutra.net/playability.html. Accedido el 13 de Febrero de 2008

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.