Revisión sistemática del proceso de teñido de algodón con colorantes reactivos para optimizar la cinética tintórea en fase de adsorción
Contenido principal del artículo
Resumen
La fase de adsorción y la cinética tintórea como elementos correlacionados en un proceso de teñido con colorantes reactivos sobre fibra de algodón son de vital importancia, no solo para el proceso tintóreo como tal, sino que además, un adecuado y consciente uso de los elementos que intervienen en la receta de tintura, la curva de procesos ajustada a las realidades del equipo, maquinaria y procesos, así como una adecuada elección de los colorantes y auxiliares, permitirá tener el mayor aprovechamiento del color sobre la fibra. Es por ello por lo que tras la revisión sistemática de literatura, varios autores abordan estas dos temáticas como elementos fundamentales para ser revisados en un proceso, mismos que aportan en la reducción del tiempo de teñido, la correcta igualación del color sobre la fibra y por sobre todo, permiten tener el mayor aprovechamiento de colorantes y auxiliares, y con ello minimizar la cantidad de desperdicios; y, posteriormente, realizar procesos de recuperación de agua más eficientes, ecológicos y naturales.
Descargas
Detalles del artículo
Citas
Pruś S, Kulpiński P, Matyjas-Zgondek E, et al (2023) The Light Fastness of the Reactive Dyes on Cationized Cellulose. J Nat Fibers 20:. https://doi.org/10.1080/15440478.2 023.2215995 DOI: https://doi.org/10.1080/15440478.2023.2215995
Sales DA, Lima PNS, Silva LS, et al (2022) Amino-Functionalized Titanate Nanotubes: pH and Kinetic Study of a Promising Adsorbent for Acid Dye in Aqueous Solution. Materials (Basel) 15:. https://doi.org/10.3390/ma15186393 DOI: https://doi.org/10.3390/ma15186393
Farias S, De Oliveira D, Ulson De Souza AA, et al (2017) Removal of Reactive Blue 21 and Reactive Red 195 dyes using horseradish peroxidase as catalyst. Brazilian J Chem Eng 34:701–707. https://doi.org/10.1590/0104-6632.20170343s20160091 DOI: https://doi.org/10.1590/0104-6632.20170343s20160091
Djordjevic D, Stojiljkovic D, Smelcerovic M (2014) Adsorption kinetics of reactive dyes on ash from town heating plant. Arch Environ Prot 40:123–135. https://doi. org/10.2478/aep-2014-0024 DOI: https://doi.org/10.2478/aep-2014-0024
Ngaha MCD, Njanja E, Doungmo G, et al (2019) Indigo Carmine and 2,6-Dichlorophenolindophenol Removal Using Cetyltrimethylammonium Bromide Modified Palm Oil Fiber: Adsorption Isotherms and Mass Transfer Kinetics. Int J Biomater 2019:. https://doi.org/10.1155/2019/6862825 DOI: https://doi.org/10.1155/2019/6862825
Balakrishnan S, Wickramasinghe GD, Wijayapala US (2019) Study on dyeing behavior of banana fiber with reactive dyes. J Eng Fiber Fabr 14:. https://doi. org/10.1177/1558925019884478 DOI: https://doi.org/10.1177/1558925019884478
Liu L, Mu B, Li W, Yang Y (2019) Cost-effective reactive dyeing using spent cooking oil for minimal discharge of dyes and salts. J Clean Prod 227:1023–1034. https://doi. org/10.1016/j.jclepro.2019.04.277 DOI: https://doi.org/10.1016/j.jclepro.2019.04.277
Al-Qahtani SD, Snari RM, Alamrani NA, et al (2022) Synthesis and adsorption properties of fibrous-like aerogel from acylhydrazone polyviologen: efficient removal of reactive dyes from wastewater. J Mater Res Technol 18:1822–1833. https://doi. org/10.1016/j.jmrt.2022.03.087 DOI: https://doi.org/10.1016/j.jmrt.2022.03.087
Sökmen N, Aktas MO (2013) Dyeing of linen and blends with direct, reactive and sulphur dyes. Asian J Chem 25:3893–3896. https://doi.org/10.14233/ajchem.2013.13835 DOI: https://doi.org/10.14233/ajchem.2013.13835
Zhang J, Zhu M, Jones I, et al (2021) Performance of activated carbons prepared from spent tyres in the adsorption of rhodamine B in aqueous solutions. Environ Sci Pollut Res 28:52862–52872. https://doi.org/10.1007/s11356-021-14502-4 DOI: https://doi.org/10.1007/s11356-021-14502-4
Cagnetti C, Gallo T, Silvestri C, Ruggieri A (2021) Lean production and Industry 4.0: Strategy/management or technique/implementation? A systematic literature review. Procedia Comput Sci 180:404–413. https://doi.org/10.1016/j.procs.2021.01.256 DOI: https://doi.org/10.1016/j.procs.2021.01.256
Irdemez Ş, Özyay G, Ekmekyapar Torun F, et al (2022) Comparison of Bomaplex Blue CR-L Removal by Adsorption Using Raw and Activated Pumpkin Seed Shells. Ecol Chem Eng S 29:199–216. https://doi.org/10.2478/eces-2022-0015 DOI: https://doi.org/10.2478/eces-2022-0015
Shan B, Xiong W, Zhang S (2019) Dyeing method and properties of a novel blue azoanthraquinone reactive dye on cotton. Molecules 24:1–9. https://doi.org/10.3390/ molecules24071334 DOI: https://doi.org/10.3390/molecules24071334
Popoola SA, Al Dmour H, Rakass S, et al (2022) Enhancement Properties of Zr Modified Porous Clay Heterostructures for Adsorption of Basic-Blue 41 Dye: Equilibrium, Regeneration, and Single Batch Design Adsorber. Materials (Basel) 15:. https://doi. org/10.3390/ma15165567 DOI: https://doi.org/10.3390/ma15165567
Hasani N, Selimi T, Mele A, et al (2022) Theoretical, Equilibrium, Kinetics and Thermodynamic Investigations of Methylene Blue Adsorption onto Lignite Coal. MOLECULES 27:. https://doi.org/10.3390/molecules27061856 DOI: https://doi.org/10.3390/molecules27061856
Śmigiel-Kamińska D, Kumirska J, Wąs-Gubała J, Stepnowski P (2020) The Identification of Cotton Fibers Dyed with Reactive Dyes for Forensic Purposes. Molecules 25:. https://doi.org/10.3390/molecules25225435 DOI: https://doi.org/10.3390/molecules25225435
Miljković M, Purenović M, Stamenković M, Petrović M (2012) Determination of two reactive dyes concentration in dyed cotton fabric. Hem Ind 66:243–251. https://doi. org/10.2298/HEMIND110721091M DOI: https://doi.org/10.2298/HEMIND110721091M
Cheng L, Farooq A, Yang HW, et al (2023) A low-dosage chemicals, short process alternative approach to reactive dyeing of golden cocoon-like silk fibers with robust color fastness. Polym Test 123:108035. https://doi.org/10.1016/j. polymertesting.2023.108035 DOI: https://doi.org/10.1016/j.polymertesting.2023.108035
Haque ANMA, Sultana N, Sayem ASM, Smriti SA (2022) Sustainable Adsorbents from Plant-Derived Agricultural Wastes for Anionic Dye Removal: A Review. Sustain 14:. https://doi.org/10.3390/su141711098 DOI: https://doi.org/10.3390/su141711098
Machado KMG, Compart LCA, Morais RO, et al (2006) Biodegradation of reactive textile dyes by basidiomycetous fungi from Brazilian ecosystems. Brazilian J Microbiol 37:481–487. https://doi.org/10.1590/S1517-83822006000400015 DOI: https://doi.org/10.1590/S1517-83822006000400015
Kieng, Kevin; Hadibarata, Tony; Elwina, Elwina; Dewi R (2016) Reactive dyes adsorption via Citrus hystrix peel powder and Zea mays cob powder: characterization, isotherm and kinetic studies. 6:1612–1620
Carneiro PA, Boralle N, Stradiotto NR, et al (2004) Decolourization of anthraquinone reactive dye by electrochemical reduction on reticulated glassy carbon electrode. J Braz Chem Soc 15:587–594. https://doi.org/10.1590/S0103-50532004000400023 DOI: https://doi.org/10.1590/S0103-50532004000400023
Alkas TR, Ediati R, Ersam T, Purnomo AS (2022) Reactive Black 5 decolorization using immobilized Brown-rot fungus Gloeophyllum trabeum. Mater Today Proc 65:2934– 2939. https://doi.org/10.1016/j.matpr.2022.02.521 DOI: https://doi.org/10.1016/j.matpr.2022.02.521
Fakhr IMI, Zayed SMA (2008) Egyptian Journal of Chemistry: Preface. Egypt J Chem 51:647–656. https://doi.org/10.21608/EJCHEM.2021
El-Desouky MG, Hassan N, Shahat A, et al (2021) Synthesis and Characterization of Porous Magnetite Nanosphere Iron Oxide as a Novel Adsorbent of Anionic Dyes Removal from Aqueous Solution. BIOINTERFACE Res Appl Chem 11:13377–13401. https://doi.org/10.33263/BRIAC115.1337713401 DOI: https://doi.org/10.33263/BRIAC115.1337713401
DG MDATJA (2009) PRISMA 2020 flow diagram new SRs. Prism Statement. https:// doi.org/10.1371/journal.pmed1000097
Sonal S, Prakash P, Mishra BK, Nayak GC (2020) Synthesis, characterization and sorption studies of a zirconium(IV) impregnated highly functionalized mesoporous actIVated carbonsb. RSC Adv 10:13783–13798. https://doi.org/10.1039/c9ra10103a DOI: https://doi.org/10.1039/C9RA10103A
Wang J, Gao Y, Zhu L, et al (2018) Dyeing property and adsorption kinetics of reactive dyes for cotton textiles in salt-free non-aqueous dyeing systems. Polymers (Basel) 10:. https://doi.org/10.3390/polym10091030 DOI: https://doi.org/10.3390/polym10091030
Guo J, Wang J, Zheng G (2019) Synthesis of cross-linking cationic starch and its adsorption properties for reactive dyes. In: THIRD INTERNATIONAL CONFERENCE ON ENERGY ENGINEERING AND ENVIRONMENTAL PROTECTION. IOP PUBLISHING LTD, DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND DOI: https://doi.org/10.1088/1755-1315/227/6/062034
Araujo FV da F, Yokoyama L, Teixeira LAC (2006) Remoção de cor em soluções de corantes reativos por oxidação com H2O2/UV. Quim Nova 29:11–14. https://doi. org/10.1590/s0100-40422006000100003 DOI: https://doi.org/10.1590/S0100-40422006000100003
Ekambaram SP, Perumal SS, Annamalai U (2016) Decolorization and biodegradation of remazol reactive dyes by Clostridium species. 3 Biotech 6:1–8. https://doi. org/10.1007/s13205-015-0335-0 DOI: https://doi.org/10.1007/s13205-015-0335-0
Mohamed FA, Abd El-Megied SA, Mohareb RM (2020) Synthesis and application of novel reactive dyes based on dimedone moiety. Egypt J Chem 63:4447–4455. https://doi.org/10.21608/EJCHEM.2020.24092.2437 DOI: https://doi.org/10.21608/ejchem.2020.24092.2437
El-Apasery MA, Aly AA, Ahmed DA (2022) Decolorization of Reactive Dyes, Part II: Eco-Friendly Approach of Reactive Dye Effluents Decolorization Using Geopolymer Cement Based on Slag. Egypt J Chem 65:49–54. https://doi.org/10.21608/ ejchem.2022.146015.6355.