Laboratorio Aéreo Inteligente para muestreos hídricos en la Amazonía del Ecuador
Contenido principal del artículo
Resumen
En este artículo se presenta una breve investigación relacionada a la problemática ambiental de monitoreo preventivo de fuentes hídricas en la región Amazónica del Ecuador. En tal virtud, se realiza la presentación de una propuesta de estrategia operativa a través de la implementación de un Laboratorio Aéreo Inteligente LAI, conformado por un Vehículo Aéreo no Tripulado RPA y un sistema de recolección de muestras de agua. A fin de garantizar un monitoreo remoto autónomo de ambientes acuáticos, el LAI integra una interfaz Ser Humano-Máquina HMI que permite al operador en Tierra interactuar través de protocolos de comunicación de largo alcance con el LAI, el cual cumple con su funcionalidad por medio una arquitectura de hardware y software integrada a bordo. En el trabajo se muestra el prototipo de LAI ensamblado, resultados de su explotación en campo para evaluación de propiedades fisicoquímicas, así como una reflexión hacia trabajos futuros en esta temática.
Descargas
Detalles del artículo
Citas
Organización de las Naciones Unidas: Derecho a un medio ambiente limpio, saludable y sostenible. https://www.ohchr.org/es/documents/thematic-reports/ahrc4953-right clean-healthy-and-sustainable-environment-non-toxic. Accedido el 24 de Febrero de 2024.
Sánchez A.A., Tello L.L.: La contaminación ambiental en los acuíferos de Ecuador. Revista Visión Contable, pp. 37-47 (2023).
Chamorro W. P., Sarduy-Pereira L. B., et al.: Gestión de los residuos sólidos en áreas rurales, un análisis de una parroquia de la amazonia ecuatoriana. I+ D Tecnológico, 1(19). (2023). DOI: https://doi.org/10.33412/idt.v19.1.3776
Galarza E., Cabrera M., et. al.: Assessing the quality of amazon aquatic ecosystems with multiple lines of evidence: the case of the Northeast Andean foothills of Ecuador. Bulletin of Environmental Contamination and Toxicology, pp. 52-61 (2020). DOI: https://doi.org/10.1007/s00128-020-03089-0
Sorribas, M. V., et al.: Hydrological tracking model for Amazon surface waters. Water Resources Research, 9, e2019WR024721 (2020). DOI: https://doi.org/10.1029/2019WR024721
Goerner A., Gloaguen R., Makeschin F.: Monitoring of the Ecuadorian mountain rainforest with remote sensing. Journal of Applied Remote Sensing, 1(1), 013527 (2007). DOI: https://doi.org/10.1117/1.2784111
Santos F., Meneses P., Hostert P.: Monitoring long-term forest dynamics with scarce data: a multi-date classification implementation in the Ecuadorian Amazon. European Journal of Remote Sensing, 52, p. 62-78 (2019). DOI: https://doi.org/10.1080/22797254.2018.1533793
Valencia E., Palma K., Changoluisa I., et al.: Wetland monitoring through the deployment of an autonomous aerial platform. IOP Conference Series: Earth and Environmental Science, 1(32), 012002 (2019). DOI: https://doi.org/10.1088/1755-1315/432/1/012002
Abril Saltos, R.V., et. al.: Caracterización preliminar de calidad de aguas en subcuenca media del río Puyo. Ingeniería Hidraúlica y Ambiental, 38(2), 59-72 (2017).
Jatsun S., et al.: Modeling and control architecture of an autonomous mobile aerial platform for environmental monitoring. IEEE International Conference on Information Systems and Computer Science (INCISCOS), Quito, Ecuador, p. 177-182 (2019). DOI: https://doi.org/10.1109/INCISCOS49368.2019.00036
Martinez Leon, A. S., Mosquera Morocho, L.M., Emelyanova O.: Control System of Small-Unmanned Aerial Vehicle for Monitoring Sea Vessels on Coastal Territory of Ecuador. Frontiers in Robotics and Electromechanics, Springer, 1(2), p. 295-314. DOI: https://doi.org/10.1007/978-981-19-7685-8_19
Martínez León A.S., Rukavitsyn A. N., Jatsun S. F.: Topology optimization of a UAV airframe. 6th International Conference on Industrial Engineering, p. 338-346 (2021). 13. Emelyanova O., et. al: The synthesis of electric drives characteristics of the UAV of “convertiplane-tricopter” type. In: MATEC Web of Conferences, 99, 02002 (2017). DOI: https://doi.org/10.1051/matecconf/20179902002
Mellinger D., Kumar V.: Control and Planning for Vehicles with Uncertainty in Dynamics. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 960-965 (2010). DOI: https://doi.org/10.1109/ROBOT.2010.5509794
Rinaldi M., Primatesta S., Guglieri, G.: A comparative study for control of quadrotor UAVs. Applied Sciences, 13(6), 3464 (2023). DOI: https://doi.org/10.3390/app13063464
Bao N., Ran X., Wu Z., et al.: Research on attitude controller of quadcopter based on cascade PID control algorithm. IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 1493-1497 (2017). DOI: https://doi.org/10.1109/ITNEC.2017.8285044
Zenkin A., et al.: Quadcopter Simulation Model for Research of Monitoring Tasks. Proceedings of 26th Conference of Open Innovations Association, pp. 449-457 (2020). DOI: https://doi.org/10.23919/FRUCT48808.2020.9087391
Jatsun S., Emelyanova O., Martinez Leon A., Mosquera Morocho L.: Controlled Adaptive Flight of a Convertiplane Type Tricopter in Conditions of Uncertainty for Monitoring Water Areas. IEEE International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), pp. 1-7 (2020). DOI: https://doi.org/10.1109/FarEastCon50210.2020.9271078
Krzysztofik I., Koruba Z.: Analysis of Quadcopter Dynamics During Programmed Movement Under External Disturbance. Nonlinear Dynamics and Control, Springer, Cham, pp. 177-185 (2020). DOI: https://doi.org/10.1007/978-3-030-34747-5_18
Cheng H., Yang, Y.: Model predictive control and PID for path following of an unmanned quadrotor helicopter. IEEE 12th Conference on Industrial Electronics and applications, pp. 768-773 (2017). DOI: https://doi.org/10.1109/ICIEA.2017.8282943
Jatsun S., et al.: Hovering control algorithm validation for a mobile platform using an experimental test bench. IOP Conference Series: Materials Science and Engineering, 1(1027), 012008 (2021). DOI: https://doi.org/10.1088/1757-899X/1027/1/012008
Doukhi O., Fayjie A., Lee D.: Intelligent controller design for quad-rotor stabilization in presence of parameter variations. Journal of Advanced Transportation (2017). DOI: https://doi.org/10.1155/2017/4683912
Martins L., Cardeira C., Oliveira P.: Feedback Linearization with Zero Dynamics Stabilization for Quadrotor Control. Intelligent & Robotic Systems 1(101), pp. 1-17 (2021). DOI: https://doi.org/10.1007/s10846-020-01265-2
Casado R., Bermudez A.: Simulation Framework for Developing Autonomous Drone Navigation Systems. Journal Electronics 1(10), 7 (2021). DOI: https://doi.org/10.3390/electronics10010007
Dim C., Nabor F., Santos G., et al.: Novel Experiment Design for Unmanned Aerial Vehicle Controller Performance Testing. IOP Conference Series: Materials Science and Engineering, IOP Publishing 1(533), 012026 (2019). DOI: https://doi.org/10.1088/1757-899X/533/1/012026
Flores-Ruiz E., et al.: The research protocol VI: How to choose the appropriate statistical test. Inferential statistics. Journal Alerg Mex., 3(64), pp. 364-370 (2017). DOI: https://doi.org/10.29262/ram.v64i3.304
Bautista-Díaz M.L., et al.: Pruebas estadísticas paramétricas y no paramétricas: su clasificación, objetivos y características. Boletín Científico Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo, 9 (17), pp. 78-81 (2020). DOI: https://doi.org/10.29057/icsa.v9i17.6293
Universidad del Pacífico: Guía práctica de SPSS para diseños paramétricos y no paramétricos. https://cliic.org/2020/Taller-Normas-APA-2020/Guia-Estadistica PACIFICO_c.pdf. Accedido el 01 de Marzo de 2