Técnicas de Minería de datos aplicados a la agricultura: Estado del Arte y análisis bibliométrico
Contenido principal del artículo
Resumen
En esta investigación, se presenta un análisis bibliométrico de 106 artículos de revistas y estado del arte indexados en Scopus, junto con un análisis sistemático de 83 artículos seleccionados. Se identifican áreas de estudio que incluye la predicción de rendimiento y crecimiento de cultivos, la detección de enfermedades en plantas, análisis de agua y suelo, relacionados con diferentes tipos de cultivo como: cereales (arroz, cebada, maíz, trigo, soya); frutas (manzana, pepino); legumbres (alfalfa, frejol, cacahuate); tubérculos, entre otros. Se examinan variables climáticas, suelo, agua, condiciones topográficas, edafológicas y técnicas de minería de datos como, Redes Neuronales, Deep Learning, segmentación, reglas de asociación y clasificación, entre otras, para optimizar el uso de recursos y tomar decisiones agrícolas basadas en datos. Además, se destacan los desafíos y oportunidades en esta área de investigación, así como las perspectivas futuras para el desarrollo de soluciones de minería de datos avanzadas en el contexto agrícola. Este análisis contribuye a una mejor comprensión de cómo la minería de datos está transformando el sector agrícola, comunidad académica y científica, con el fin de impulsar la eficiencia, la sostenibilidad y la toma de decisiones informadas en la producción de alimentos.
Descargas
Detalles del artículo
Citas
Choudhury, A., Biswas, A., Prateek, M., Chakrabarti, A.: Agricultural Informatics: Automation Using the IoT and Machine Learning. wiley (2021). https://doi.org/10.1002/9781119769231.
Castillejo, P., Johansen, G., Cürüklü, B., Bilbao-Arechabala, S., Fresco, R., Martínez-Rodríguez, B., Pomante, L., Rusu, C., Martínez-Ortega, J.-F., Centofanti, C., Hakojärvi, M., Santic, M., Häggman, J.: Aggregate Farming in the Cloud: The AFarCloud ECSEL project. Microprocess. Microsyst. 78, (2020). https://doi.org/10.1016/j.micpro.2020.103218.
Kavitha, G., Elango, N.M.: An overview of data mining techniques and its applications. Int. J. Civ. Eng. Technol. 8, 1013–1020 (2017).
Kommineni, M., Perla, S., Yedla, D.B.: A survey of using data mining techniques for soil fertility. Int. J. Eng. Technol. 7, 917–918 (2018).
Belinda, M.J.C.M., Umamaheswari, R., David, S.A.: Study of high yielding crops cultivation in India using data mining techniques. Int. J. Eng. Technol. 7, 121–124 (2018).
Pandiyaraju, V., Logambigai, R., Ganapathy, S., Kannan, A.: An Energy Efficient Routing Algorithm for WSNs Using Intelligent Fuzzy Rules in Precision Agriculture. Wirel. Pers. Commun. 112, 243–259 (2020). https://doi.org/10.1007/s11277-020-07024-8.
Majumdar, J., Naraseeyappa, S., Ankalaki, S.: Analysis of agriculture data using data mining techniques: application of big data. J. Big Data. 4, (2017). https://doi.org/10.1186/s40537-017-0077-4.
Vandna, Bansal, K.L.: Data mining techniques for increasing smart farming in agrarian sector. Int. J. Sci. Technol. Res. 9, 3555–3562 (2020).
Xu, W., Wang, Q., Chen, R.: Spatio-temporal prediction of crop disease severity for agricultural emergency management based on recurrent neural networks. Geoinformatica. 22, 363–381 (2018). https://doi.org/10.1007/s10707-017-0314-1.
de Lima, M.D., Barbosa, R.: Methods of authentication of food grown in organic and conventional systems using chemometrics and data mining algorithms: A review. Food Anal. Methods. 12, 887–901 (2019). https://doi.org/10.1007/s12161-018-01413-3.
Organización de las Naciones Unidas para la Alimentación y la Agricultura: Ecuador en una mirada | FAO en Ecuador | Organización de las Naciones Unidas para la Alimentación y la Agricultura, https://www.fao.org/ecuador/fao-en-ecuador/ecuador-en-una-mirada/es/, last accessed 2022/10/02.
Cutamora, J.C., Padua, R.: An Economic Rationalization Framework for Higher Education. Recoletos Multidiscip. Res. J. 8, 43–65 (2020). https://doi.org/10.32871/rmrj2008.01.04.
Ait Issad, H., Aoudjit, R., Rodrigues, J.J.P.C.: A comprehensive review of Data Mining techniques in smart agriculture. Eng. Agric. Environ. Food. 12, 511–525 (2019). https://doi.org/10.1016/j.eaef.2019.11.003.
Sunhare, P., Chowdhary, R.R., Chattopadhyay, M.K.: Internet of things and data mining: An application oriented survey. J. King Saud Univ. - Comput. Inf. Sci. 34, 3569–3590 (2022). https://doi.org/10.1016/j.jksuci.2020.07.002.
Aria, M., Cuccurullo, C.: bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 11, 959–975 (2017). https://doi.org/10.1016/J.JOI.2017.08.007.
Computers and Electronics in Agriculture | Journal | ScienceDirect.com by Elsevier, https://www.sciencedirect.com/journal/computers-and-electronics-in-agriculture, last accessed 2023/09/09.
Computers and Electronics in Agriculture, https://www.scimagojr.com/journalsearch.php?q=30441&tip=sid&clean=0, last accessed 2023/09/09.
Scopus - Computers and Electronics in Agriculture | Signed in, https://www.scopus.com/sourceid/30441, last accessed 2023/09/09.
International Journal of Innovative Technology and Exploring Engineering, https://www.scimagojr.com/journalsearch.php?q=21100889409&tip=sid&clean=0, last accessed 2023/09/11.
Harzing, A.W., Alakangas, S.: LibGuides: Impact Metrics: Author Impact: h-index, g-index... Scientometrics. 106, 787–804 (2016). https://doi.org/10.1007/S11192-015-1798-9.
Nasrnia, F., Ashktorab, N.: Sustainable livelihood framework-based assessment of drought resilience patterns of rural households of Bakhtegan basin, Iran. Ecol. Indic. 128, (2021). https://doi.org/10.1016/j.ecolind.2021.107817.
Li, S., Bhattarai, R., Cooke, R.A., Verma, S., Huang, X., Markus, M., Christianson, L.: Relative performance of different data mining techniques for nitrate concentration and load estimation in different type of watersheds. Environ. Pollut. 263, (2020). https://doi.org/10.1016/j.envpol.2020.114618.
Kumar, Y.J.N., Kanth, T.V.R.: GIS-MAP based spatial analysis of rainfall data of Andhra Pradesh and telangana states using R. Int. J. Electr. Comput. Eng. 7, 460–468 (2017). https://doi.org/10.11591/ijece.v7i1.pp460-468.
Othman, Z.A., Ismail, N., Hamdan, A.R., Sammour, M.A.: Klang vally rainfall forecasting model using time series data mining technique. J. Theor. Appl. Inf. Technol. 92, 372–379 (2016).
Refonaa, J., Lakshmi, M.: Accurate prediction of the rainfall using convolutional neural network and parameters optimization using improved particle swarm optimization. J. Adv. Res. Dyn. Control Syst. 11, 318–328 (2019).
Hsiou, D.-C., Huang, F., Tey, F.J., Wu, T.-Y., Lee, Y.-C.: An Automated Crop Growth Detection Method Using Satellite Imagery Data. Agric. 12, (2022). https://doi.org/10.3390/agriculture12040504.
Mohammed, S., Elbeltagi, A., Bashir, B., Alsafadi, K., Alsilibe, F., Alsalman, A., Zeraatpisheh, M., Széles, A., Harsányi, E.: A comparative analysis of data mining techniques for agricultural and hydrological drought prediction in the eastern Mediterranean. Comput. Electron. Agric. 197, (2022). https://doi.org/10.1016/j.compag.2022.106925.
Sheik Mohideen Shah, S., Meganathan, S., Kamali, A.: Soft computing research for weather prediction using multilayer architecture. Int. J. Eng. Adv. Technol. 8, 3779–3783 (2019). https://doi.org/10.35940/ijeat.F9390.088619.
Vinoth, B., Elango, N.M.: An effective data mining techniques based optimal paddy yield cultivation: a rational approach. Paddy Water Environ. 19, 331–343 (2021). https://doi.org/10.1007/s10333-021-00845-8.
Marshall, M., Thenkabail, P.: Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation. ISPRS J. Photogramm. Remote Sens. 108, 205–218 (2015). https://doi.org/10.1016/j.isprsjprs.2015.08.001.
Pineda, M., Barón, M., Pérez-Bueno, M.-L.: Thermal imaging for plant stress detection and phenotyping. Remote Sens. 13, 1–21 (2021). https://doi.org/10.3390/rs13010068.
Delerce, S., Dorado, H., Grillon, A., Rebolledo, M.C., Prager, S.D., Patiño, V.H., Varón, G.G., Jiménez, D.: Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS One. 11, (2016). https://doi.org/10.1371/journal.pone.0161620.
Arumugam, A.: A predictive modeling approach for improving paddy crop productivity using data mining techniques. Turkish J. Electr. Eng. Comput. Sci. 25, 4777–4787 (2017). https://doi.org/10.3906/elk-1612-361.
Ahmed, G.N., Kamalakannan, S., Kavitha, P.: A Machine Learning Approach for Stochastic Pattern Analysis for the Measurement of Time-Series Datasets. Instrum. Mes. Metrol. 21, 199–205 (2022). https://doi.org/10.18280/i2m.210505.
Gholizadeh, A., Carmon, N., Klement, A., Ben-Dor, E., Borůvka, L.: Agricultural soil spectral response and properties assessment: Effects of measurement protocol and data mining technique. Remote Sens. 9, (2017). https://doi.org/10.3390/rs9101078.
Farhate, C.V. V, De Souza, Z.M., De Medeiros Oliveira, S.R., Tavares, R.L.M., Carvalho, J.L.N.: Use of data mining techniques to classify soil CO2 emission induced by crop management in sugarcane field. PLoS One. 13, (2018). https://doi.org/10.1371/journal.pone.0193537.
Radhika, A., Masood, M.S.: Effective dimensionality reduction by using soft computing method in data mining techniques. Soft Comput. 25, 4643–4651 (2021). https://doi.org/10.1007/s00500-020-05474-7.
Kiruthika, V.G., Arutchudar, V., Senthil Kumar, P.: Highest humidity prediction using data mining techniques. Int. J. Appl. Eng. Res. 9, 3259–3264 (2014).
Uchimiya, M., Bannon, D., Nakanishi, H., McBride, M.B., Williams, M.A., Yoshihara, T.: Chemical Speciation, Plant Uptake, and Toxicity of Heavy Metals in Agricultural Soils. J. Agric. Food Chem. 68, 12856–12869 (2020). https://doi.org/10.1021/acs.jafc.0c00183.
Prathik, A., Anuradha, J., Uma, K.: A novel algorithm for soil image segmentation using color and region based system. Int. J. Innov. Technol. Explor. Eng. 8, 3544–3550 (2019). https://doi.org/10.35940/ijitee.J9762.0881019.
Sumathi, M.S., Anitha, G.S.: Energy efficient wireless sensor network with efficient data handling for real time landslide monitoring system using fuzzy data mining technique. Int. J. Mob. Netw. Des. Innov. 8, 179–193 (2018). https://doi.org/10.1504/IJMNDI.2018.093701.
Kuradusenge, M., Hitimana, E., Hanyurwimfura, D., Rukundo, P., Mtonga, K., Mukasine, A., Uwitonze, C., Ngabonziza, J., Uwamahoro, A.: Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize. Agric. 13, (2023). https://doi.org/10.3390/agriculture13010225.
Calçada, D.B., Rezende, S.O., Teodoro, M.S.: Analysis of green manure decomposition parameters in northeast Brazil using association rule networks. Comput. Electron. Agric. 159, 34–41 (2019). https://doi.org/10.1016/j.compag.2019.02.013.
Chandak, P.P., Agrawal, A.J.: Smart farming system using data mining. Int. J. Appl. Eng. Res. 12, 2788–2791 (2017).
Wahabzada, M., Mahlein, A.-K., Bauckhage, C., Steiner, U., Oerke, E.-C., Kersting, K.: Metro maps of plant disease dynamics-automated mining of differences using hyperspectral images. PLoS One. 10, (2015). https://doi.org/10.1371/journal.pone.0116902.
Tripathy, A.K., Adinarayana, J., Vijayalakshmi, K., Merchant, S.N., Desai, U.B., Ninomiya, S., Hirafuji, M., Kiura, T.: Knowledge discovery and Leaf Spot dynamics of groundnut crop through wireless sensor network and data mining techniques. Comput. Electron. Agric. 107, 104–114 (2014). https://doi.org/10.1016/j.compag.2014.05.009.
Krishna Priya, C.B., Venkateswari, S.: Analysis of different clustering algorithms on management zones in precision agriculture. J. Adv. Res. Dyn. Control Syst. 11, 489–494 (2019).
Fernández, R., Montes, H., Surdilovic, J., Surdilovic, D., Gonzalez-De-Santos, P., Armada, M.: Automatic detection of field-grown cucumbers for robotic harvesting. IEEE Access. 6, 35512–35526 (2018). https://doi.org/10.1109/ACCESS.2018.2851376.
Martín, J., Sáez, J.A., Corchado, E.: On the suitability of stacking-based ensembles in smart agriculture for evapotranspiration prediction. Appl. Soft Comput. 108, (2021). https://doi.org/10.1016/j.asoc.2021.107509.
Yu, H., Kong, B., Hou, Y., Xu, X., Chen, T., Liu, X.: A critical review on applications of hyperspectral remote sensing in crop monitoring. Exp. Agric. 58, (2022). https://doi.org/10.1017/S0014479722000278.
Sanches, G.M., Graziano Magalhães, P.S., Junqueira Franco, H.C.: Site-specific assessment of spatial and temporal variability of sugarcane yield related to soil attributes. Geoderma. 334, 90–98 (2019). https://doi.org/10.1016/j.geoderma.2018.07.051.
Saritha, S., Abel Thangaraja, G.: CROP YIELD PREDICTION IN BIG DATA USING MARGALEF KERNEL PERCEPTRON BASED WINNOW BROWN BOOST CLASSIFIER. J. Theor. Appl. Inf. Technol. 101, 2091–2107 (2023).
Geetha, M.C.S., Elizabeth Shanthi, I.: Forecasting the crop yield production in trichy district using fuzzy C-Means Algorithm and Multilayer Perceptron (MLP). Int. J. Knowl. Syst. Sci. 11, 83–98 (2020). https://doi.org/10.4018/IJKSS.2020070105.
Maury, R.K., Yadav, S.K., Sharma, T.K.: Estimation of major agricultural crop with effective yield prediction using data mining. Int. J. Innov. Technol. Explor. Eng. 8, 170–174 (2019).
Chiche, A.: Hybrid decision support system framework for crop yield prediction and recommendation. Int. J. Comput. 18, 181–190 (2019).
Adil, N., Dewangan, S., Sharma, K.: Efficient classification and regression techniques to predict crop yield. Int. J. Sci. Technol. Res. 8, 378–382 (2019).
Blazquez, D., Domenech, J., Garcia-Alvarez-Coque, J.-M.: Assessing technology platforms for sustainability withweb data mining techniques. Sustain. 10, (2018). https://doi.org/10.3390/su10124497.
Patil, N.N., Saiyyad, M.A.M.: Machine learning technique for crop recommendation in agriculture sector. Int. J. Eng. Adv. Technol. 9, 1359–1363 (2019). https://doi.org/10.35940/ijeat.A1171.109119.
Sivanantham, V., Sangeetha, V., Alnuaim, A.A., Hatamleh, W.A., Anilkumar, C., Hatamleh, A.A., Sweidan, D.: Quantile correlative deep feedforward multilayer perceptron for crop yield prediction. Comput. Electr. Eng. 98, (2022). https://doi.org/10.1016/j.compeleceng.2022.107696.
de Barros, F.M.M., Oliveira, S.R.M., de Oliveira, L.H.M.: Development and validation of a recommender system for technologial information on sugarcane [Desenvolvimento e validação de um sistema de recomendação de informações tecnológicas sobre cana-de-açúcar]. Bragantia. 72, 387–395 (2013). https://doi.org/10.1590/brag.2013.049.
Kaviarasan, S., Vanitha, M.: E-farming management system using data mining techniques. Int. J. Intell. Unmanned Syst. 10, 257–266 (2022). https://doi.org/10.1108/IJIUS-05-2020-0018.
Warren Raffa, D., Bogdanski, A., Tittonell, P.: How does crop residue removal affect soil organic carbon and yield? A hierarchical analysis of management and environmental factors. Biomass and Bioenergy. 81, 345–355 (2015). https://doi.org/10.1016/j.biombioe.2015.07.022.
Revathy, R., Balamurali, S., Lawrance, R.: Classifying agricultural crop pest data using hadoop MapReduce based C5.0 algorithm. J. Cyber Secur. Mobil. 8, 393–408 (2019). https://doi.org/10.13052/jcsm2245-1439.835.
Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A.-X., Chen, W.: Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Sci. Total Environ. 625, 575–588 (2018). https://doi.org/10.1016/j.scitotenv.2017.12.256.
Godara, S., Toshniwal, D.: Deep Learning-based query-count forecasting using farmers’ helpline data. Comput. Electron. Agric. 196, (2022). https://doi.org/10.1016/j.compag.2022.106875.
Suarez, A.J.B., Singh, B., Almukhtar, F.H., Kler, R., Vyas, S., Kaliyaperumal, K.: Identifying Smart Strategies for Effective Agriculture Solution Using Data Mining Techniques. J. Food Qual. 2022, (2022). https://doi.org/10.1155/2022/6600049.
Bach, M.P., Vlahović, N., Pivar, J.: Fraud Prevention in the Leasing Industry Using the Kohonen Self-Organising Maps. Organizacija. 53, 128–145 (2020). https://doi.org/10.2478/orga-2020-0009.
Ngabalin, A.M.: An investigation on value chain cooperation attributes in fisheries micro-enterprises. Accounting. 6, 301–306 (2020). https://doi.org/10.5267/j.ac.2020.2.005.
Iantovics, L.B., Rotar, C., Morar, F.: Survey on establishing the optimal number of factors in exploratory factor analysis applied to data mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9, (2019). https://doi.org/10.1002/widm.1294.
Beniwal, S., Das, B.: Mushroom classification using data mining techniques. Int. J. Pharma Bio Sci. 6, B1170–B1176 (2015).
Correa, F.E., Oliveira, M.D.B., Gama, J., Corrêa, P.L.P., Rady, J.: Analyzing the behavior dynamics of grain price indexes using Tucker tensor decomposition and spatio-temporal trajectories. Comput. Electron. Agric. 120, 72–78 (2016). https://doi.org/10.1016/j.compag.2015.11.011.
Shortridge, J.E., Falconi, S.M., Zaitchik, B.F., Guikema, S.D.: Climate, agriculture, and hunger: statistical prediction of undernourishment using nonlinear regression and data-mining techniques. J. Appl. Stat. 42, 2367–2390 (2015). https://doi.org/10.1080/02664763.2015.1032216.
Sun, L., Zheng, Z., Zhu, J.: Mining spatio-temporal knowledge of climate for dendrobium officinale in greenhouse cultivation. Recent Adv. Electr. Electron. Eng. 11, 160–166 (2017). https://doi.org/10.2174/2352096510666170921162448.
Shastry, K.A., Sanjay, H.A., Deexith, G.: Quadratic-radial-basis-function-kernel for classifying multi-class agricultural datasets with continuous attributes. Appl. Soft Comput. J. 58, 65–74 (2017). https://doi.org/10.1016/j.asoc.2017.04.049.
Rajagopal, M., Ponnuchamy, M., Kapoor, A.: Water management for irrigation scheduling by computing evapotranspiration using ANFIS modelling. Desalin. Water Treat. 251, 123–133 (2022). https://doi.org/10.5004/dwt.2022.28290.
Demir, B., Gurbuz, F., Eski, I., Kus, Z.A., Yilmaz, K.U., Ercisli, S.: Possible Use of Data Mining for Analysis and Prediction of Apple Physical Properties [Die Anwendung statistischer Methoden (Data-Mining) zur Analyse und Prognose physikalischer Eigenschaften bei Apfel]. Erwerbs-Obstbau. 60, 1–7 (2018). https://doi.org/10.1007/s10341-017-0330-1.
Ullah, A., Mohd Nawi, N., Arifianto, A., Ahmed, I., Aamir, M., Khan, S.N.: Real-time wheat classification system for selective herbicides using broad wheat estimation in deep neural network. Int. J. Adv. Sci. Eng. Inf. Technol. 9, 153–158 (2019). https://doi.org/10.18517/ijaseit.9.1.5031.
Rahman, N.A.B.A., Tan, K.L., Lim, C.K.: Supervised and unsupervised learning in data mining for employment prediction of fresh graduate students. J. Telecommun. Electron. Comput. Eng. 9, 155–161 (2017).
Mousavizadegan, M., Mohabatkar, H.: An evaluation on different machine learning algorithms for classification and prediction of antifungal peptides. Med. Chem. (Los. Angeles). 12, 795–800 (2016). https://doi.org/10.2174/1573406412666160229150823.
Krause, P.J., Bokinala, V.: A tutorial on data mining for Bayesian networks, with a specific focus on IoT for agriculture. Internet of Things (Netherlands). 22, (2023). https://doi.org/10.1016/j.iot.2023.100738.
Shivhare, N., Rahul, A.K., Dwivedi, S.B., Dikshit, P.K.S.: ARIMA based daily weather forecasting tool: A case study for Varanasi. Mausam. 70, 133–140 (2019).